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Abstract

A computational framework is developed to assist in the discovery of new material systems and models.
The framework integrates three general steps: 1) design of experiments, where the input variables describ-
ing material geometry (microstructure), phase properties and external conditions are sampled; 2) efficient
computational analyses of each design sample, leading to the creation of a material response database; and
3) machine learning applied to this database to obtain a new design or response model.

The choice of methods for the design of experiments, computational analyses, and machine learning steps
dictates if the problem of interest is solved within a reasonable time frame. A particular challenge arises when
the construction of large databases is needed but the computational analysis of each design sample is too
time consuming given reasonable accuracy requirements. This is especially true when nonlinear irreversible
processes are modeled (e.g. plasticity). A recently developed reduced order model called “self-consistent
clustering analysis” offers a solution to accelerate the material behavior predictions for such cases, enabling
the application of the computational framework to a wide range of problems, effectively addressing the curse
of dimensionality.

The future application of this computational framework to experimentally-validated predictions will lead
to the discovery of innovative materials and structures with new capabilities in an era of high-throughput
computing (“big-data”).

Keywords: design of experiments, reduced order model, self-consistent clustering analysis, machine
learning and data mining, plasticity

1. Introduction

Structural and materials design is a highly iterative process where one seeks an optimal design for chosen
quantities of interest. Even the simplest structures and materials are composed by multiple building blocks
that can be combined in a large number of possibilities. These building blocks together with the range of
boundary conditions applied to the material/structure can lead to drastically different optimal designs.

For the particular case of material systems design, the high-dimensionality of the engineering design
space is particularly striking when considering the overwhelming amount of possible combinations that lead
to different materials. Meyers et al. [I] examined the extraordinary diversity in biological materials that are
often composed of weak constituents assembled in complex structures with radically different macroscopic
mechanical properties. Jang et al. [2] designed three-dimensional hollow ceramic nanostructures inspired by
the observation of biological structures with hierarchical arrangements of basic structural elements. Wang
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et al. [3] explored the design of elastic beam elements attached to an elastomeric core matrix to obtain a
metamaterial with intriguing acoustic properties. Other examples can be encountered in investigations on
the influence of nano- and micro-reinforcements on the behavior of elastomers [4 Bl [6], polymeric foams [7],
metal matrix composites [8], and the effect of fiber hybridization in polymer matrix composites [9] [10].

This large dimension of the engineering design space represents a major obstacle to accelerate the design
process. There are simply to many possibilities to conduct experimental investigations for every conceptual
design. Alternatively, predictive computational analyses can test a large number of conceptual designs and
create a database with the predicted macroscopic behavior or quantity of interest. Then, data mining
techniques can be used to extract from the database the relationship between the key descriptors of each
design and the quantities of interest. If this relationship is properly captured by the model obtained from
data mining, then it is possible to predict the optimal design within the sampled space.

The work presented herein intends to demonstrate how the design process of new materials and structures
can be accelerated through a computational data-driven framework. The data-driven framework is developed
by integrating three different research fields as illustrated in Figure [l 1) design of experiments (DoE); 2)
computational analyses and homogenization; and 3) machine learning (or data mining).

Each of the above steps is a field of research in itself where multiple achievements have been observed in
recent years. Therefore, Sections and provide a short review of the major accomplishments in
the respective step of the proposed framework.

1.1. Design of experiments (DoE)

Once the problem and objectives are defined, then the first step is to perform the design of experiments
(DoE) for characterizing the high dimensional space of input variables by a finite set of descriptors. As
shown in Box 1 of Figure [T} three types of descriptors are identified for the design of material systems:
microstructural (geometric) descriptors, material property descriptors, and external (boundary) conditions
descriptors.

The above descriptors contain information about the material building blocks and respective properties,
as well as their geometric assembly into material microstructures. The first set of such descriptors are
identified via microstructure characterization [I1], [12], 13| [14] [T4] and once defined, one can assign specific
material properties and a set of boundary conditions, as illustrated in Box 1 of Figure[I} Each microstructure
is characterized by a representative volume elementﬂ (RVE) or multiple statistical volume elementsﬁ (SVEs)
that are generated by a fixed set of microstructural descriptors.

Once the descriptors are selected they form a group of input design variables x for the problem,

X = [T1, ooy Tiy ee s Ty, | (1)

where d;,, indicates the total number of input design variables x considered. These variables include all the
above mentioned descriptors. For example, if the identified microstructure descriptors were volume fraction
V¢ and number of particles IV, the property descriptors were the Young’s modulus of the particles F, and
Poisson ratio v, and the boundary conditions were given by the three applied strain components €11, €22,
and €12, then there would be d;;, = 7 input design variables: x1 = Vy, 20 = Np, 23 = Ep, 24 = vp, ¥5 = €11,
Tg = €99, and x7 = €19.

After identifying the input design variables and their respective bounds and constraints, design of ex-
periments (DoE) can be used to effectively explore the domain. Without assuming prior knowledge of the
problem to be solved, space-filling designs [15] [16] that treat different regions of the input variables’ domain
equally are particularly appropriate. This type of DoE ensures that the sample points are spread out so as
to maximize the determinant of the information matrix (i.e., to ensure D-optimality) [17].

2A representative volume element (RVE) is a material domain randomly generated for a fixed set of material descriptors
that has the same homogenized behavior independently of the randomization process. In other words, the stochasticity of the
microstructure is not reflected on its macroscopic response.

3A statistical volume element (SVE) is a material domain that is not sufficiently large to obtain the same macroscopic
material response.
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Figure 1: Schematic of global framework for data-driven material systems discovery.

Santiago et al. [18] reviewed some of the most common space-filling design methods — e.g. low discrepancy
sequences [19, 20, 21} 22], good lattice points [23], Latin Hypercube Sampling |24} 25] and orthogonal Latin
Hypercube Sampling [26] — and classified them according to two metrics, the Maximin (maximizing the
minimum Euclidean distance) and the cover measure. This comparative analysis [I8] reveals that different
optimum Latin Hypercube Samplings [24] and the Sobol sequence [21], 22] offer a good compromise between
a regular grid and a random distribution.

The design of experiments for all the examples considered herein was performed using Sobol sequence
[21, 22]. Variants of the Latin Hypercube Sampling were also tested without finding significant differences,
so they are not reported. Additional details can be found on the above mentioned literature as well as
[15, 27]. An example of a DoE with Sobol sequence is given later, see Figure

1.2. Computational analyses and the curse of dimensionality

The second step is to create a database with the quantities of interest q that represent the macroscopic
response of the material for each design point x in the DoE. This database is the training data set that is
necessary for the subsequent data mining step.
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The database to be created consists of S sets of inputs x and outputs q,

{1, qW), (x?, ), ..., (x'9),q'9)} (2)

or in index notation,

(@, g, @, ¢, o @, d)} for j =1, diy and i = 1, ..., dous (3)

where d,,; corresponds to the number of output quantities of interest q, and d;,, was introduced previously
as the number of input design variables x. An example of quantities of interest q is given by the average
second Piola-Kirchhoff stress components ¢; = S11, g2 = S92, and g3 = S12 of two-dimensional RVEs, as in
Section 2

The response database to be obtained for each DoE point cannot typically be created exclusively from ex-
perimental analyses because even simple experiments for each design point can take several hours/days/weeks.
An exception occurs for cases when a large experimental database is already available as the result of a co-
ordinated effort from several experimentalists over a long period of time.

When such experimental databases are not available, computational analyses become an attractive op-
tion if two requirements are satisfied: 1) the predictions are sufficiently accurate, i.e. the analyses have
high-fidelity; and 2) the high-fidelity analyses are not computationally expensive. These requirements are
conflicting because high-fidelity simulations usually involve complex material models and fine numerical
discretizations leading to large computational expense, as highlighted in Remark [I]

Remark 1. Conducting high-fidelity analyses at a low computational cost represents the core challenge
in the proposed framework. On the one hand, without accurate predictions the created database does mot
represent the real behavior of the material/structure and the model or design found by data mining is not
guaranteed to be useful. On the other hand, without efficient analyses of every sampled microstructure,
property set and boundary condition, then the response database becomes insufficiently small for data mining.

includes the general algorithm needed to create the response database of material systemsEI
by performing computational analyses of each DoE point. Each DoE point is characterized by a given
realization r of a microstructure m, a set of properties p of the material phases (building blocks), and
external loading conditions [. These DoE points are analyzed by the finite element method of the respective
RVE, or by other numerical methods such as meshfree [28] 29] [30] or isogeometric [3I] with the necessary
adaptations. Subsequently, the RVE is homogenized in order to obtain the macroscopic response of the
material characterized by a set of quantities of interest that are then stored in a database.

In some cases standard computational analyses such as the finite element method are not sufficiently
efficient to be directly used in the data-driven framework. Analyses that are inherently complex and require
several days to complete in a high performance computer represent an obvious case, e.g. three-dimensional
analyses of heterogeneous RVEs under irreversible deformation (plasticity and/or damage) [32] [33] [10] [34].
Another case occurs even when the computational analyses are not traditionally considered costly (e.g.
hyperelasticity) but the dimensionality of the design space is high enough to require too many sampling points
to be evaluated in a timely manner through traditional methods — the curse of dimensionality (increasing
the amount of input variables leads to an exponential increase of sampling points needed).

The above mentioned cases cause a bottleneck in the database creation step of the framework, as identified
in Box 2 of Figure In the presence of such bottleneck there needs to be a viable way to accelerate the
computational predictions without compromising accuracy for each DoE point. This can be achieved by
using reduced order models (ROMs) in the data-driven framework, instead of performing direct numerical
simulations (DNS).

4The framework could be applied to macroscopic structures instead. In this case, the homogenization procedure may not
be needed.



Conceptually, there is no important change to the data-driven framework if using a ROM instead of
performing a DNS — see These are just analysis methods to determine the response of the
system for each design point determined from the DoE. In practice, however, finding the adequate ROM
that is both efficient and accurate for the physical process of interest can be a daunting task, especially
because ROMs need to be trained in an offline stage before they can be predictive.

A recent ROM proposed by Liu et al. [35] called “self-consistent clustering analysis” (SCA) was developed
such that minimal time and computational resources are required for the offline sage, while still leading to
accurate predictions for irreversible processes such as inelastic deformation of highly heterogeneous materials.
An overview of this method is provided in[Appendix B but the reader is referred to the original publication
for details [35].

Other ROMs can be used in the data-driven framework. See for example, micromechanics-based methods
[36, B7, [38], the transformation field analysis (TFA) [39], the nonuniform transformation field analysis
(NTFA) [40], the principal component analysis [41], 42], 43] also known as proper orthogonal decomposition
(POD) [44, [45], and the proper generalized decomposition (PGD) [46], [47]. Successful applications of the
NTFA [48, 49, 50], POD [44] [511, [ 45, [52] and PGD [53] demonstrate the usefulness of these approaches.
However, the simplicity of the SCA method [35] and its applicability to highly localized deformation processes
makes it particularly attractive for integration in the framework presented herein, as demonstrated next.

1.3. Machine learning

Once the response database is complete, a model that captures the influence of the DoE descriptors
on the quantities of interest can be constructed. For small databases these models can be obtained by
simple calibration procedures or by trial and error. This has been the traditional approach for developing
constitutive models for materials that are based on a relatively small number of experiments.

Nevertheless, a data-driven framework often leads to large databases that need to be evaluated with
machine learning (or data mining) methods. Machine learning is at the intersection of high-performance
computing, statistics and data sharing [54]. This implies a continued development of computer hardware,
statistical theories and numerical methods, as well as the creation and maintenance of open databases
[55, 56].

Machine learning has drawn particular attention in recent years with the advances in high-throughput
computing technology that led to an outbreak of “big data” collection in a wide range of scientific fields
[67, 58]. One of the most successful and widely spread achievements was the mapping of the human genome
[59]. Other notable examples, among many possibilities, can be found in the following fields: neuroscience
with the unveiling of secrets of the brain [60]; clinical medicine [6I] by finding pathways to cure cancer
[62, 63, [64]; biology with explanations for the presence of microbia in the human gut [65] and termites [66],
protein analysis and genetics [67]; biotechnology with the design of new drugs [68, [69]; artificial intelligence
with robots adapting like animals [70] and programs mastering the GO game [71]; psychology by profiling
neuropsychosocial behavior [72]; climate change and its effects on food [73]; earthquake detection [74]; and
economics [75].

Machine learning is also leading to outstanding achievements in the design of materials at different length
and time scales. On the one hand, material scientists have focused on accelerating materials design by
probing large datasets obtained from first principle calculations [76], [77, [78] or even from failed experiments
[79]. Initiatives such as AFLOWIib [80] or the Open Quantum Materials Database [81] are reshaping
materials design at the quantum-scale. On the other hand, the pioneering work of Yvonnet and co-workers
[82, [83] [84], B5] recently opened new avenues for the design of materials at larger scales (micro to macro) by
performing the data-driven computational homogenization of nonlinear elastic composite RVEs.

The recent work of Yvonnet and co-workers [83] [84] [85] is of particular importance to this article because
it demonstrated for the first time that a data-driven framework can be used to determine the constitutive
law of nonlinear elastic heterogeneous materials. In principle, their framework can be extended to nonlinear
irreversible processes such as plasticity and damage, if the computational cost associated with the analyses
of such RVEs is small enough to enable the creation of a large database — see Remark

Then, depending on the DoE and size of the database created, an appropriate data mining algorithm
needs to be selected. From the countless number of methods available in the literature, two methods are

5
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particularly prevalent [86]: Kriging and Neural Networks. [Appendix C|provides a broad overview of these
methods but the interested reader is referred to the widely available literature on these subjects.

2. First example: discovery of general 2D hyperelastic composite constitutive law

Depending on the problem to be solved, a large database may be constructed by high-fidelity computa-
tional simulations in a reasonable time frame without the need to use reduced order models to speed up each
prediction. Yvonnet and co-workers [82] [83, [84], 85] pioneered the data-driven discovery of elastic constitutive
relations of heterogeneous materials by using spline interpolation to discover the nonlinear elastic consti-
tutive relation of simplified two-dimensional RVEs with a single particle/reinforcement and subjected to
small deformation [82]. However, the authors noted that when considering large deformations they required
the use of tensor rank decomposition (PARAFAC) [84] to create the necessary database. Using the same
method they were able to determine the linear elastic laws of two-dimensional SVEs with small variations
of the microstructure (composed of multiple elliptical particles) [83]. Recently, they have also investigated
simplified three-dimensional RVEs with a single particle and under small deformation using neural networks
for data mining [85].

The first illustrative example presented herein is based on these works and focuses on the application
of the proposed framework to discover the constitutive law of a two-dimensional hyperelastic composite
reinforced by multiple elliptical particles under a large variation of microstrutural descriptors and large
deformation. In our case, the choice of the design of experiments method allied to the fact that the com-
putational analysis of hyperelastic composites are relatively inexpensive to perform (a few seconds) enables
the discovery of the constitutive law as a function of all the input variables without the need of a reduced
order model.

2.1. Design of experiments (DoE)

As previously introduced, the DoE has to characterize the microstructure, material properties, and
boundary conditions. For this problem the composite microstructures were generated according to the
following criteria: 1) each material microstructure is periodic and composed of the same type of particles
(same shape and size); 2) particles can assume an elliptical shape where the aspect ratio of the semi-axis
ranges from 1 to 5; 3) particle volume fraction can change from 2% to 45%; 4) particles are allowed to overlap;
5) particle dispersion is controlled in such a way that the mean of nearest distances between particles’ centers
is within 0.3mm and 0.5mm; 6) particles have random orientation; and 7) particles and matrix are perfectly
bonded. The undeformed length of the RVEs was considered to be 4mm.

Considering the above criteria, four microstructure descriptors were selected with the respective bounds:

Vi =[12%,45%] , N, =1[40,100] , A, =][1,5] , 7q=[0.3mm,0.5mm] (4)

where V; is the particle volume fraction, IV, the number of particles, A, the particles semi-axis aspect ratio,
and 74 the mean of nearest distances measured at the particle centers. The above descriptors are subjected
to the following constraints:

212
Vg
where the first constraint is the packing limit for an RVE with characteristic length L., while the other two
constraints are for the size of the minimum minor semi-axis of the elliptical particles a,,;» and the maximum
major semi-axis by,qz-

Figure[2] presents a schematic of the microstructure. Each realization for each RVE is created by randomly
generating the center position and semi-axis orientation for each elliptical particle and by excluding the
particles that violate the above constraints.

For this problem only one specific material is considered for each constituent without changing its prop-
erties, i.e. there is no need to define material descriptors. The matrix material is a soft compressible

N, <

Amin = 0.0lmm , b4, = 0.3mm (5)

6
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Figure 2: Schematic of composite RVE geometry.

elastomer modeled by the Arruda-Boyce [87] hyperelastic constitutive model, while the particles are a stiff
compressible Neo-Hookean elastomer.

The Arruda-Boyce [87] constitutive law for the matrix material has a strain energy density function that
depends on three polymer properties: the initial bulk modulus Ky, the initial shear modulus pg, and the
stretch at which the polymer chain network becomes locked \,,. The energy density function is then given
by:

5
e N K [(J2=1
C)= B (I -3) + 5 —InJ 6
¥ (C) u;azﬁ =)+ (5 (6)
where parameters 8 = )%2, ap = %7 ap = %, ag = %7 ay = %, as = % are obtained using the first

five terms of the inverse Langevin function, J = det(F) is the Jacobian determinant of the deformation gra-
dient F, I; = I;J~2/3 depends on the first invariant I; = Tr(C) of the the right Cauchy-Green deformation
tensor C = FTF, and parameter p is calculated from the material properties A, and pq:

5 -1 1
o i 3 99 513 42039
=D s = 1 7
=7 (i—l faif 0y ) Ho ( Tone T TETee T aTaTeas, M

Note that the right Cauchy-Green deformation tensor C can be written as a function of the Green strain
E as follows:

C=2E+1 8)

with 1 being the identity matrix. For a review on the essentials of continuum mechanics and hyperelastic
models see the book by Belytschko et al. [88].
The matrix material properties considered for the Arruda-Boyce model are:

K =800 MPa , g =180.5 MPa , A\ =28 (9)

7
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The Neo-Hookean constitutive law for the particles is defined by the following strain energy density:

A K
w(C):%(Il—3)+7O(J—1) (10)
where as before i is the initial shear modulus, K is the initial bulk modulus, J is the Jacobian determinant,

and [ = I, J /3
The particle material properties considered for the Neo-Hookean model are:

KP'®=40GPa , 8'°=1.9GPa (11)

For any hyperelastic model the second Piola-Kirchhoff stress S is directly related to the strain energy
density:

9Y(C) _ 0Y(E)

ocC  OE
from which the expressions for the second Piola-Kirchhoff stress of each hyperelastic model can be triv-
ially determined, see [88]. Similarly, the tangent modulus also called the second elasticity tensor C°F is
determined by computing the Hessian:

S=2

(12)

asi_OH(C) _ PU(E)
0CoC OEOE

The final descriptors needed for the DoE are given by the boundary conditions applied to the RVEs.
Since the goal is to find the macroscopic constitutive law of the hyperelastic composite by homogenizing
the micro-scale RVEs, the macroscopic strain measure of the material needs to be converted to a boundary
value problem of the RVE.

Computational homogenization of multi-scale analysis has received significant attention in the last decade
[89, 90, OT), @2, [50]. Broadly, computational homogenization can be classified as first-order and higher-
order. First-order computational homogenization [89 [91] assumes that the consecutive scales are separate;
therefore, the macroscopic kinetic and kinematic quantities are obtained from a volume average of the
micro-scale quantities of the RVE. Higher-order computational homogenization [90, 02] does not assume
scale separation; hence, the local kinematic and kinetic quantities of the RVE are homogenized within a
finite region of the macroscopic scale by considering their Taylor series expansion with the desired number
of higher-order terms, i.e. conserving higher gradients of the local fields of interest.

A first-order computational homogenization scheme is used herein, i.e. the characteristic length scale at
which the macroscopic constitutive law is analyzed is assumed to be significantly larger than the domain of
the RVE Q. In this scheme the macroscopic deformation tensor F is used to formulate a boundary value
problem of the RVE, preferably periodic as discussed in [90],

(13)

u(X)=(F-1)-X+u(X) on 99 (14)

where X is the reference position vector on the boundary of the RVE 99, u(X) is the corresponding
displacement and u (X) signals the periodicity of the displacement field. If 1 (X) = 0 then uniform boundary
conditions could be used instead, although these are not used here because multiple authors have concluded
that the overall properties of the RVEs are better estimated using periodic boundary conditions [50] 93], 90}
941, 95].

In this problem the macroscopic constitutive law to be found relates the macroscopic Green strain E (or
equivalently, the macroscopic right Cauchy-Green deformation C) to the macroscopic second Piola-Kirchhoff
stress S via the macroscopic strain energy density (E),

s _ OV(E)
S = o (15)
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and with the macroscopic tangent modulus given by

_ 0*Y(E
cse_ TUE) (16)

OEJE
Therefore, the macroscopic deformation gradient F necessary to impose the periodic boundary conditions
from equation needs to be obtained from the macroscopic Green strain E. As discussed by Yvonnet
et al. [84], the macroscopic strain energy density v is invariant under rotations R, so _the macroscopic

deformation gradient can be computed by restricting the RVE rigid body rotation (i.e. R = 1) and then
calculating the principal square root of the right Cauchy-Green deformation tensor,

F=U=C"2=(2E+1)" (17)

from which the periodic boundary conditions of the RVEs can be defined by equation .

The solution of the boundary value problem is then obtained from the computational analyses of the
different RVEs, from which the macroscopic quantities of interest are computed by homogenization of the
microscopic quantities of interest. In particular to this problem, the quantity of interest is the strain energy
density v as a function of the Green strain E. With this quantity it is possible to predict the second Piola-
Kirchhoff stress S of the RVE and compare it to the homogenization of the microscopic S over the RVE
domain 2.

As thoroughly explained by Yvonnet et al. [84], the homogenized stress measures have to be obtained
from the first Piola-Kirchhoff stress P due to the Hill-Mandel lemma,

(P:F)=(P): (F)=P:F (18)

where (o) indicates a volume average integral over the undeformed RVE domain . Hence, the homoge-
nization of the second Piola-Kirchhoff stress S is computed from the first Piola-Kirchhoff stress as follows,

S—F!.p (19)

To complete the DoE step, the range of macroscopic Green strains E needs to be defined. These strains
are then converted to the macroscopic deformation gradient from equation so that the periodic boundary
conditions can be applied to the RVEs via equation . The solution to the boundary value problem of
the RVEs is then found from the computational analyses, from which the subsequent homogenization of the
strain energy density is performed.

The bounds of the three macroscopic Green strain components considered herein are:

Eiy = By =[-0.1,1.5] |, FEjp=[-0.3,0.3] (20)
under the following constraint:
1< _ 20, - <1
V2EL +1)2E» + 1)

due to the limitation on the angle between the stretch directions of the Green strain arising from finite
deformation theory.

Figure [3| shows a DoE obtained from Sobol sequence [2I], 22] for the three strain components with the
bounds given in and under the constraint given in without considering additional descriptors, i.e.
with the following input variables xy = E11, 9 = Fas, and x3 = F15. A DoE with more descriptors, for
example the 4 microstructural descriptors previously listed plus these 3, is obtained in a similar way but the
input variables domain has dimension 7. This figure illustrates three useful characteristics of Sobol sequence:

(21)

1. The sample points are spread out non-uniformly over the input variables space;

2. There are no coincident projections of the sample points in the different hyperplanes of the input
variables space;
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Figure 3: Design of experiments with 1000 points for the three boundary condition descriptors using Sobol sequence.
Red dots indicate the first 50 points, green dots indicate the next 150 points, and blue dots the remaining
800 points.

3. The input variables space is successively refined as the Sobol sequence progresses.

The first point is connected with the second, since the non-uniformity of this space filling design is
associated with the fact that all the points are distinguishable in any of the three projection planes of the
three descriptors — see Figure [3] This occurs for a DoE of any dimension generated by Sobol sequence. Note
that if a regular grid of sample points was used instead, there would be multiple coincident point projections
in the different hyperplanes which deteriorates the data mining and metamodeling process [86), 16}, [I8].

The third point is significantly useful in practice and is illustrated by the different colors for the 1000
DoE points shown in Figure [8] The first 50 points in this Sobol sequence are shown in red, where it is
clear that the points are spread out through the input variables space. The next 150 points are shown in
green, demonstrating that the space is successively refined by points that never coincide with the previous
points. The remaining 800 points (in blue) also clearly show this successive refinement, always guaranteeing
a space filling design. This is useful because one does not know a priori how many sample points in the
DoE lead to a good model determined by the data mining procedure. Therefore, consecutive subsets of a
DoE will be space-filling designs themselves. The consecutive increase of the number of DoE points in the
sequence is then associated to a global refinement of the design space, exploring regions that were previously
unexplored.

10



2.2. Computational analysis and data mining

The created DoE uses a space filling design and no prior knowledge of the hyperelastic composite RVEs is
assumed. In reality, for this illustrative problem it would be possible to simplify the data mining process by
reducing the dimension of the DoE. For example, the constitutive models of the two phases of the composite
only depend on the two invariants of the Green strain, i.e. only the two principal components of the Green
strain actually influence the constitutive behavior. This means that the shear component is redundant since
one can always rotate to the frame of principal strains.

Most microstructural descriptors considered are also expected to have a small influence on the response,
except the volume fraction. Volume fraction affects the response significantly because the reinforcements
are stiffer than the matrix and the average response of the composite is mostly related to the amount of
reinforcement embedded in the matrix, not to its particular shape. The other microstructural descriptors
influence the strain concentration around the particles but since there is no plasticity or damage in this
problem those effects are largely eliminated after homogenization.

Nevertheless, this example provides an important basis to assess the capabilities of the data-driven
framework applied to materials design. The models found from data mining should be able to characterize
the response of the material accurately, but also to inform about the influence of the different descriptors on
the response. The following three step approach is proposed when first applying the data-driven framework
to a specific problem.

2.2.1. Step 1: uncertainty quantification

As previously described, after the completion of the DoE the representative microstructures are generated
for each DoE point so that the computational analyses can be performed, recall Figure |1l However, a fixed
set of microstructural descriptors may not uniquely characterize a material microstructure. In fact, for the
7 dimension DoE used in this example — see and — one can fix all the microstructural descriptors
(volume fraction, number of particles, elliptical semi-axis aspect ratio, and mean of nearest distances) and
still generate multiple realizations that have different particle positions and orientations — see Figure [4]

l . ~.

I
. - - -
,. L ‘l \ c” \E‘I/§\\
\ <

/ ’\\,‘\ ’/\ )
(a) Realization 1 (b) Realization 2

Figure 4: Two different realizations of the microstructure for the following fixed set of microstructural descriptors:
Vi = 17%, Np = 84, Ar = 4.1, and 74 ~ 0.32mm. Note that the matrix material is not shown for clarity,
and that both microstructures are periodic.

The first step of the procedure is then to quantify the uncertainty of the response of each microstructure
for a range of other descriptors (boundary conditions and/or material properties). The length scale of the
microstructure domain L. is strongly associated with the uncertainty of the response. A larger L. tends
to eliminate the stochastic effects which implies that the domain is representative (RVE), while a smaller
L. leads to structures that have different responses (SVEs). Naturally, larger domains imply a greater
computational cost per simulation - see Remark [2]
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Remark 2. The analyst needs to decide whether to conduct less expensive analyses for multiple realizations
of each DoFE point (multiple SVEs) and subsequently average them, or to simulate one realization per DoE
point (RVE) knowing that those simulations have a higher computational cost.

In this example the characteristic length L. of the microstructure is considered large enough if the average
coefficient of variation of the homogenized strain energy density (E) and of the Euclidean norm of the

homogenized second Piola-Kirchhoff stress |[S|| = /5%, + S%, + S%, are approximately less than 5%.
In general, the maximum coefficient of variation criterion for any average quantity of interest g; of the

RVE is then written as,

max [CV ((L(m’p’l)ﬂ S5% , Vpu (22)

where (jgm’p D is the homogenized quantity of interest for microstructure m, property set p and boundary

condition [. The coefficient of variation is defined as,

=(m,p,l)
ov gy = e E;fm;; ) (23)
4

ql(m,p,l)

where o ( ) is the standard deviation of all the realizations R for each microstructure m, property set

p and boundary condition I,

R
_(m 1 _(r,m,p, =(m,p, 2
o (gm0 = RZ{(%" g pl)” (24)
r=1

and qzl(m’p D) is the mean of the homogenized quantity of interest for all the realizations R,
R _(r,m,p,l)
=(m,p,l 4q;
"= (25)
r=1
with q_Z(T,m,p ) heing the homogenized quantity of interest for realization r of the microstructure m, property

set p and boundary condition I.

The coeflicient of variation is meaningful for non-negative quantities of interest, as for the strain energy
density and the norm of the components of the second Piola-Kirchhoff stress, but not for the individual
stress components. So, in this case g1 = ¢ (E) and @ = [|S]|.

The estimation of the uncertainty of the response of each microstructure was then performed by gen-
erating R = 20 realizations for each of the M = 4 different microstructures described in Table [[] All the
microstructures were subjected to the same L = 50 deformation states obtained by Sobol sequence, similar
to the randomization shown in Figure As mentioned in the previous section, only one set P = 1 of
material properties was considered for the particles and matrix in this problem, see equation @ for the
matrix properties and equation for the particles.

Table 1: Four microstructures/RVEs for uncertainty quantification.

‘ Vf Np A, Tq
RVE 1 | 4.7% 47 4.9 0.50 mm
RVE 2 | 17.1% 84 4.1 0.32 mm
RVE 3 | 29.5% 48 1.3 0.49 mm
RVE 4 | 39.0% 84 1.4 0.33 mm
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Remark 3. The estimation of uncertainty of this problem involved a total of RX M X PxL = 20x4x1x50 =
4000 simulations for each characteristic length of the microstructure L.. The largest characteristic length
simulated was L, = 4mm, corresponding to an approzimate computation time of 0.5min for generating each
finite element mesh and 4min to perform the respective analysis. The output files of the 4000 analyses
occupied more than 80GB of storage space in the high performance computing cluster, and the simulations
were conducted in parallel with only 1 processor each. These output files were subsequently homogenized to
produce the database for the uncertainty quantification analysis.

Figures ) and b) illustrate the uncertainty for each macroscopic deformation state, i.e. each boundary
condition [, applied to the different realizations of the 4 microstructures for the largest characteristic length
L. = 4mm that approximately satisfied criteria . For clarity, the states of deformation in both figures
were sorted such that the quantities of interest are in ascending order. The figures include a box for each
deformation state and microstructure where the central mark is the median of the quantity of interest, the
edges of the box are the 25th and 75th percentiles, and the top and bottom dashed lines represent the
maximum and minimum value of the quantity of interest, respectively.

The maximum coefficient of variation of the macroscopic strain energy density ¢ and of the norm of the
second Piola-Kirchhoff stress ||S|| for each microstructure with L. = 4mm is shown in Table

Table 2: Uncertainty quantification of strain energy density and PK2 stress of four RVEs.

‘ max [CV (&(m’p’l))] mazx [CV <||g(m’p’l)||)]

RVE 1 0.6% 1.3%
RVE 2 1.4% 2.9%
RVE 3 1.0% 2.4%
RVE 4 2.3% 5.5%
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States of Deformation (sorted by ascending potential) States of Deformation (sorted by ascending ||S||)
(a) Uncertainty of strain energy density. (b) Uncertainty of the norm of second Piola-Kirchhoff stress.

Figure 5: Uncertainty quantification of (a) strain energy density and (b) norm of the stress components for 4 RVEs
with L = 4mm subjected to the first 50 deformation states obtained from the Sobol sequence. Note that
the deformation states were sorted such that the potential energy (a) and the the norm of the stress
components in (b) is in ascending order. The descriptors of the 4 RVEs are included in Table

The uncertainty of the response for each microstructure shows that the stress measure has higher un-
certainty than the strain energy density, as expected. This follows directly from the fact that the stresses
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are derivatives of the strain energy density with respect to the strain measure, as pointed out previously,
increasing the uncertainty. Moreover, observing Figures ) and b) it is clear that the microstructures with
higher volume fraction lead to a higher uncertainty, which is also expected [96] 97, [32].

This initial estimation of uncertainty for the problem before evaluating a larger input variables space
with all the descriptors is important when the problem under analysis involves large quantities of data. Since
the uncertainty is sufficiently low, the data mining process can continue using a single realization for each
microstructure, which decreases significantly the number of simulations necessary to determine the material
constitutive law for a large number of boundary conditions and microstructures.

2.2.2. Stage 2: data mining for a single RVE

Having found that a single realization for each microstructure with characteristic length L. = 4.0 mm
characterizes reasonably well the response for any boundary condition, it is now useful to estimate the
convergence obtained in the approximation of the composite constitutive behavior. Before solving the
problem for the DoE of largest dimension with varying microstructure and boundary conditions, it is useful
to analyze in detail the response for a typical microstructure. This preliminary analysis provides information
on the adequacy of the space-filling design for the boundary conditions, showing if local refinements are
necessary and giving an estimate for the number of DoE points needed to predict the composite response
within a certain accuracy.

Hence, a single RVE for a specific microstructure is considered under a larger number of boundary condi-
tions than the ones used for uncertainty quantification. The selected RVE has the following microstructural
descriptors:

e RVE 5: V; ~ 21.0%, N, = 60, A, ~ 3.8, and 7q ~ 0.4mm

A DoE with 1,000 points was created from a Sobol sequence where each DoE point corresponds to a
different boundary condition applied to the RVE, while the remaining descriptors are fixed. One thousand
simulations of RVE 5 are conducted and the homogenized strain energy density is approximated by the two
data mining methods introduced previously: kriging and neural networks. The three stress components are
then determined by differentiating the approximated homogenized strain energy density with respect to the
Green strain components.

An error metric needs to be defined to estimate the accuracy of the approximation for the quantities of
interest determined from each data mining method. Relative error metrics should be defined for non-negative
quantities, so the error of the stress predictions is calculated for N points not included in the training data
as follows,

[8¢m# ) — stme |
[8em ]

1 N
Es =+ > (26)
(m,p,1)=1
where N is the number of data points used for validation, S(m.p) is the predicted homogenized stress for
microstructure m, property set p and boundary condition I, and S("?!) is the observed value from the
actual finite element analysis of the RVE. Note that each point is labeled as (m,p,l), corresponding to a
particular microstructure, property set and boundary condition.
The error of the strain energy density is defined similarly,

N W(m,p,z) _ @(m,p,n’

1
Ei=5 2

(m,p,l)=1

[0 D] 27

In this case the models are determined for the same microstructure and property set, so m and p do not
change and all the DoE points correspond to changing the boundary conditions I.

Convergence for this problem is estimated by determining different kriging and neural network models
for an increasing number of successive DoE points in increments of one hundred until a total of eight hundred
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Figure 6: Error of the strain energy density and the norm of the second Piola-Kirchhoff stress predicted by kriging
and neural networks models of RVE 5 when considering different DoE sizes.

points. The last two hundred points of the initial DoE are used for validation, i.e. N = 200 in equations
and ([27)).

Figureshows the errors of 1 and ||S|| obtained for both methods using different DoE sizes. From
the figure it is clear that both methods lead to similar approximation errors for the strain energy density
(below 0.5%) and stresses (approximately 10%). The strain energy density is accurately approximated even
considering a small DoE. However, the second Piola-Kirchhoff stress of the RVE for different deformation
states requires a larger DoE since it is related to the first derivative of the strain energy density. As expected,
considering more DoE points in the data mining process leads to more accurate predictions.

The largest errors shown in Figure [6] occur for highly localized regions of the deformation space, in
particular for large compression combined with large shear. These correspond to regions where the two
principal Green strains are significantly negative (below —0.1) and where the deformation space is not
sampled adequately. Recall Figure [3] where it is clear that even for a DoE of one thousand points the
compressive region is sampled only with a few points due to the small size of this region. Local refinement
of the DoE in this region reduces the error of the models, as shown in the next subsection for the largest
DoE analyzed herein.

Figures ma), b) and ¢) show the approximations obtained when deforming the RVE for three loading
paths that evolve linearly from the undeformed configuration until different limits of the deformation space,
see . For clarity all stress components are plotted as a function of the largest deformation strain Fqq.
Since the approximations obtained by kriging and neural networks are very similar when considering the
same number of DoE points, the results for the three deformation paths are shown for the kriging model
considering six hundred DoE points and for the neural networks model considering eight hundred points.
Otherwise, the results from the two methods are difficult to distinguish in the entire deformation space.

The agreement between both models and the finite element analyses of the RVE is good for all three
cases. Note that the models are determined for the scattered points of the DoE and that these do not
coincide with the predicted points in the figures. Particular attention should be given to Figure ) that
shows the result obtained for the largest tensile deformation along direction 1, the largest compression along
direction 2 and greatest shear. It can be seen that for points closer to the bounds of the deformation space
the solution obtained with six hundred DoE points is less accurate.

In addition, important information about the influence of the inputs on the model outputs can be obtained
via global sensitivity analysis, e.g. variance based methods [98 [99]. In variance-based sensitivity analysis
there are two indices that are typically used to measure sensitivity: the first-order or main sensitivity index
S;; and the total effect or total sensitivity index St . offers a brief description on how these
indices can be determined. Both indices are within [0,1] and indicate the influence of the corresponding
input on the output (no influence if 0; strong influence if 1). For any input variable z;, the inequality
S; < S, is satisfied, and the difference between the two measures quantifies how much interaction z; has
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Figure 7: Comparison of the stress-strain response of RVE 5 from the undeformed configuration until three different
final deformation states. The kriging model shown in a dashed line is obtained for 600 DoE points, while
the neural networks model (circles) is obtained for 800 DoE points.

with other inputs.

Figure [§| and Table [3] show the sensitivity indices calculated for the kriging model using the entire DoE
of one thousand points. As can be observed the sensitivity of the response is basically the same for E1;
and Fso since the RVE is isotropic and the bounds are symmetric. Interestingly, the sensitivity to Fyo is
negligible which shows that for the majority of the deformation space the influence on the response is small.
This may be related to the fact that E15 is not necessary to determine the constitutive law, since there are
only two invariants of deformation.

2.2.3. Step 3: data mining for the general problem

Finally, after estimating the uncertainty associated with different microstructures and the number of
boundary conditions that are necessary to reasonably determine the constitutive law of a single microstruc-
ture, the complete analysis for the 7 descriptors previously discussed can be conducted, see equations (|4))
and .

Taking advantage of the fact that the Sobol sequence does not have coincident DoE points projected
in the different hyperplanes, a possible way to minimize the amount of DoE points is to create a seven
dimension DoE where each point corresponds to a different combination of all the descriptors. In practice
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Table 3: Sensitivity analysis for RVE 5 (rounded to third decimal place).

\ By E E1y
S; | 0.504 0.483 0.002
St, | 0.514 0.493 0.007
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Figure 8: Sensitivity indices of the kriging model of RVE 5 obtained for 1000 DoE points. The values of the
sensitivity indices are shown in Table E’l

this means the creation of one finite element mesh for each distinct RVE of the microstructure and each
distinct boundary condition applied to that RVE. The alternative would be to do a cross-design, where
each microstructure would be subjected to the same boundary conditions as was done previously for the
uncertainty quantification analyses. A cross-design is particularly inefficient [86], especially with the kriging
method due to the need to invert the covariance matrix.

Testing hundreds of thousand or even millions of DoE points is possible, but that may be an unneces-
sary effort since the sensitivity of the response to the different descriptors is unknown and there may be
redundancy. A DoE of 10,000 points is used such that the database could be created in less than one day of
computation (an average of fifty processors were used simultaneously; the database from the RVE analyses
had an approximate size of 0.5TB). This number of DoE points is sufficiently large to limit the use of kriging
because the inverse of the covariance matrix consumes too much computer memory. Hence, data mining is
performed herein only using neural networks.

In addition to the 10,000 DoE points that define the space-filling design, a local refinement of the input
variables space is included in the highly localized regions where the prediction errors occurred. This local
refinement was obtained such that the optimality of the Sobol sequence would not be lost. The procedure
was as follows:

1. 20,000 points were generated from a Sobol sequence of dimension 7, and the first 10,000 points were
included in the DoE;

2. Of the remaining 10,000 points the only ones that were included in the DoE obeyed the following
constraints:
o Vi >30%
° Vf > 40%, or E12 < —0.2 or E12 > 0.2
° Ell <0or E22 < 0or Elg < —0.25 or Elg > 0.25

These constraints correspond to regions with large shear and volume fraction, as well as regions with
compression and large shear. Of the last 10,000 of the 20, 000 points only 377 satisfied the above constraints.
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ass Therefore, the entire DoE included 10,377 points which led to a significant decrease of the overall error at
ass  those localized regions, as seen in Figure [9] when compared to Figure [6]
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Figure 9: Error of the strain energy density and the norm of the second Piola-Kirchhoff stress predicted by neural
networks models of the 7 dimension DoE. Note that, as before, stresses are directly calculated from
differentiating the strain energy density approximated from neural networks.

490 Figure [9] presents the convergence of the neural networks models obtained by successively increasing the
a1 size of the DoE. The last 2,500 DoE points are used for validation of the models. A similar trend to the
402 single RVE problem is observed, where the strain energy density is accurately predicted even for a relatively
a3 small number of DoE points, while the prediction from the second Piola-Kirchhoff stress requires a larger
aa  DoE. These results are acceptable considering the uncertainty associated to each RVE and that a large input
a5 variables space is being explored.
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Figure 10: Sensitivity indices of the neural networks model of the 7 dimension DoE with 10, 377 points. The values
of the total sensitivity indices are shown in Table ﬂ

Table 4: Sensitivity analysis for 7 dimension DoE (rounded to the third decimal place).

‘ Vf Np Ay rd En L2 Eis
S; 0.117 0.000 0.007 0.000 0.414 0.411 0.000
St, | 0.160 0.001 0.016 0.001 0.439 0.434 0.001

496 The sensitivity indices determined for the DoE with 10,377 points are shown in Figure [10] and Table
a7 The influence of particle volume fraction on the response is very significant, as expected. The number of
a8 particles and their dispersion, at least within the bounds considered in this problem, have small impact on
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the response. The aspect ratio of the particles has a noticeable influence, though inferior to the influence of
the volume fraction. As observed before, the shear component of the strain also has a negligible influence
on the global response. These general trends are in part expected, as discussed in subsection 2.2 but the
actual contribution and the relative importance of the different descriptors would be challenging to predict
a priori.
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(a) Influence of particle volume fraction V; on potential (b) Influence of particle aspect ratio A, on potential en-
energy (Np = 60, A, =3, 7g = 0.4mm, E12 = —0.3) ergy (Vy = 0.4, Ny = 60, 7g = 0.4mm, E12 = —0.3)

Figure 11: Variation of potential energy as a function of different (a) particle volume fractions and (b) particle
aspect ratios, while maintaining the remaining descriptors fixed.

Figure [11]illustrates the dependence of the macroscopic strain energy density on (a) the volume fraction
and (b) the aspect ratio of the particles for a particular set of descriptors. Figure (a) reinforces the findings
that the volume fraction has the most significant influence on the macroscopic strain energy density for the
entire range of deformation states, while figure (b) shows that the variation caused by the aspect ratio of
the particles is less pronounced.
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Figure 12: Variation of potential energy as a function of different (a) particle volume fractions and (b) particle
aspect ratios, while maintaining the remaining descriptors fixed.
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The predictions for the stress-strain behavior of the composite for components 11 under the same de-
scriptors and for Eyy = 0 are shown in Figure Once again, the influence of volume fraction and aspect
ratio is illustrated by these figures. The effect of the aspect ratio is in part given by the fact that some long
elliptical particles are forced to bend when the RVE is deformed.

3. Second example: design of 3D inelastic composite via self-consistent clustering analysis

Contrary to what was shown in the previous example, there are several structural and materials science
problems where computational analyses are significantly time consuming. This poses an additional challenge
that can be overcome with advanced reduced order models. As previously mentioned, the authors propose
the use of the self-consistent clustering analysis (SCA) — see [35] and — instead of the direct
numerical simulations (DNS) of the high-fidelity RVEs.

A three-dimensional RVE is considered for a particle reinforced composite with a particle volume fraction
of 20%. The same microstructure was used in the RVE introduced in [35]. The RVE has 80mm of length
and each spherical particle has a radius of 13.5mm. The high-fidelity RVE is analyzed by the finite element
method using a mesh of 512, 000 elements that was shown previously [35] to lead to similar results as a coarser
mesh. The RVE analysis is considered as the reference solution, and here both phases of the composite are
assumed inelastic following the von Mises (Jz2) elasto-plastic model. Recall that the yield surface of this
model is given by,

f = Oym — OY(EP) < 0 (28)

with oy, = 1/3J2 being the von Mises equivalent stress dependent on the second invariant of the deviatoric
stresses J3, and oy being the yield stress determined from the respective hardening law.
Hence, the matrix material (labeled as phase 1) has the following properties:

E, =100 GPa , v =03 (29)
with the hardening law given by:

oy, (£7) = 100 + 300 (£)** MPa (30)

where £ is the equivalent plastic strain of the matrix phase.
The properties of the reinforcement material (labeled as phase 2) are:

E2 =500 GPa s Vg = 0.19 (31)
with the hardening law given by:

oy, (e2) =a+b(£)"? MPa (32)

where €} is the equivalent plastic strain of the particle phase, while a and b are the two input design variables
for the problem. Recall that parameter a is related to yielding, while b is related to hardening of the particles.

The goal of this illustrative design problem is to find the properties a and b of the particle phase such
that the toughness of the composite is maximized. Toughness is defined as the integral of the stress-strain
curve obtained from a uniaxial tension test of the composite material before fracture. A simplified fracture
model is considered for the composite material:

e The composite RVE fails when 10% of the matrix phase has a maximum strain component above 0.07;
e No damage model is implemented, i.e. this composite is considered brittle;
e The particles are considered to fail at a significantly higher strain level, i.e. the composite fails uniquely

by matrix failure.
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The above considerations were made so that the results could be easily interpreted for this illustrative
example. Any fracture model could have been implemented, and one or more damage laws could have been
considered. However, this would increase the number of model parameters without any benefit for a first
demonstration of the framework.

Maximizing material toughness is the result of two competing factors: ductility and strength. If the
particle phase has high yield strength (remaining elastic) the overall strength of the composite increases
but its ductility decreases because the matrix phase is highly strained and fails prematurely. On the other
hand, if the particles have low yield strength and hardening but high ductility the matrix material is less
strained for the same overal composite strain, which increases ductility of the composite at the expense of
decreasing its strength. Finding a compromise between strength and ductility of the reinforcement particles
of the composite is expected to lead to a maximum composite toughness.

Note that since the problem involves the assessment of the local (matrix) strains to determine fracture
in a three-dimensional composite with both phases being inelastic, the solution to this problem would be
difficult to obtain without a data-driven framework such as the one proposed herein.

The approach to this problem is similar to the one outlined in the previous section. The only difference
is that the predictions of each data point are not conducted directly from the high-fidelity RVE. Instead, the
high-fidelity RVE is loaded in 6 orthogonal loading conditions within the elastic regime in order to complete
the offline stage of SCA, so that SCA can then be used to predict the behavior of the reduced RVE under
plasticity up to fracture. Elastic simulations of the high-fidelity RVE have negligible computation time,
while the complete analysis considering plasticity would take 72 hours as discussed next.

Without assuming any prior knowledge about this problem, it can be useful to sample a large part of the
design space with fast predictions (small number of SCA clusters). If the accuracy of these fast predictions
is reasonable, the global trend of the response (toughness) can be quickly captured as a function of the input
variables (a and b). Evidently, the SCA predictions should be validated by comparing to the high-fidelity
predictions for different input variables to assess the accuracy and convergence of the method. As shown
next, multiple reduced RVEs are considered where different number of SCA material clusters were chosen.
The number of clusters of every reduced RVE in the particle phase (phase 2) is related to the number of
clusters in the matrix phase (phase 1) by,

ka = [k1/4] (33)

where k7 is the number of matrix clusters and ks is the number of particle clusters in the reduced RVE.

Considering 64 matrix clusters (hence, 16 particle clusters) it takes 10 minutes to complete the offline
stage of SCA and an average of 27 seconds to perform the online stage for each design pointﬂ The total
computation time of the SCA method is obtained by adding the one-time offline computation time to the
computation time of all the online analyses conducted (including postprocessing):

tiotal = toffline + S % (tonline + tpostprocessing) (34)

with S being the number of DoE points considered — recall equation .This means that the composite
toughness can be determined using SCA with 64 matrix clusters for a thousand DoE points (S = 1000) in
a desktop computer in less than 8 hours of computation (total).

On average, the direct numerical simulations of each high-fidelity RVE require 72 hoursﬁ of run time in a
state of the art high performance computing cluster using 24 cores (Intel Haswell E5-2680v3 compute nodes
with 2.5GHz and 2 x 12-cores), and an additional 30 minutes to perform the homogenization of the stresses
and strains using a single processor (postprocessing time). Clearly, the computational savings provided

5Computation times determined for a desktop computer using a single processor. Note that the SCA method is implemented
in a non-optimized MATLAB code.

6Note that the current problem requires a precise determination of the local strains and global stress/strain behavior of
the composite in order to determine the fracture point. This implies a large number of analysis steps, so every simulation
conducted in this section (whether for the SCA method or the DNS validation simulations) considered a total of 200 output
steps for the uniaxial tension test of the composite up to a strain of 0.1.
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by the SCA method are a fundamental contribution to accomplish the data-driven design of the inelastic
composite.

The DoE for the SCA analysis with 64 matrix clusters was obtained as described in the previous section
and considering 1000 points from a Sobol sequence of the the two input design variables with the following
bounds:

a = [10, 700] MPa , b =[50, 2000] MPa (35)

Figure [I3] shows a contour plot of the toughness property of the composite obtained for the 1000 DoE
points within the above bounds of the input design variables. This figure shows a clear region where toughness
is maximized (light yellow region) along a line with a small slope: for reference, the DoE points located close
to that region have a toughness increase of 6.5% from (a,b) = (20, 310) MPa to (a,b) = (221, 60) MPa.
The DoE point with highest predicted toughness from SCA considering k; = 64 matrix clusters occurs at
(a,b) = (221,60) MPa with a value of 12.6mJ/mm?3.
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(a) Response surface of composite toughness (k1 = 64). (b) Contour plot of composite toughness (k1 = 64).

Figure 13: Composite toughness obtained from the SCA method using 64 matrix clusters for 1000 DoE points of
the inelastic parameters a and b. The dashed box indicates the region of interest where toughness is
higher: a = [100, 350] MPa and b = [50,400] MPa.

A qualitative analysis of the results in Figure [[3] suggests that the general trend of composite toughness
variation with parameters a and b is captured. On the one hand for sufficiently high values of yielding
(parameter a) the actual value of a becomes irrelevant because the particles remain linear elastic, i.e.
composite fracture occurs by matrix cracking before the particles enter the inelastic regime, leading to the
same value of toughness (dark blue region with 8 mJ/mm3). On the other hand, even if the particles
yield before the composite fractures (low values of a), if hardening is large enough (parameter b) then the
composite toughness is still low. This leads to a contour plot where there are clear lines with similar levels
of toughness — see Figure [I3p).

A premature quantitative analysis of the results shown in Figure [I3] would indicate that points close to
(a,b) = (221,60) MPa would lead to maximum composite toughness. However, this response surface was
obtained for a coarse analysis of a reduced RVE with 80 material clusters (64 for the matrix, 16 for the
particles), as compared to 512,000 finite elements used in the DNS of the high-fidelity RVE.

In order to assess the accuracy of the SCA predictions, the stress-strain response of the composite for
three specific DoE points is presented in Figure These points were selected according to Figure ),
i.e. using the response surface obtained from a coarse SCA with k; = 64 clusters. In Figure [I4] there are
three SCA predictions obtained for an increasing number of clusters, as well as the results obtained by DNS
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of the high-fidelity RVEs. The blue stress-strain curves are obtained for DoE point (a,b) = (43,111) MPa
predicted to lead to low toughness since this point is far from the region of interest indicated by the box in
Figure The other two points are located inside the region of interest corresponding to high toughness
values. Table[5|summarizes the toughness predictions and compares the error of the various SCA refinements
as compared to the DNS.
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Figure 14: Stress-strain response of the composite material for three different DoE points. The results obtained
from the SCA method for different number of clusters and from the Direct Numerical Simulation (DNS)
of the high-fidelity RVE are included for comparison. The composite toughness is represented as the
shaded area underneath the curves. Table [§] includes the toughness values obtained for the three DoE
points and respective SCA predictions.

Observing Table [5| it can be seen that the composite toughness from DNS is higher for point (a,b) =
(91,129) than for point (a,b) = (221, 60), unlike what is predicted by the coarse SCA response (k1 = 64).
As the number of material clusters increases, one can observe from the table as well as Figure [14] that the
toughness approximation error decreases, and that using 1024 matrix clusters the SCA method correctly
predicts which point has higher toughness.

Table 5: Comparison of the composite toughness obtained from the DNS of the high-fidelity RVE with the predic-
tions obtained from SCA considering different number of material clusters. Value in parenthesis indicates
relative error, toughness units are mJ/mm?.

| DNS SCA (k; =1024) SCA (k; = 256) SCA (k1 = 64)

|
(a,b) = (43,111) 7.7 (+8.5%) 8.0 (+12.7%) 8.3 (+16.9%)
(a,b) = (221, 60 11.1 (+13.2%)  12.0 (+22.4%) 12.6 (+28.6%)
(a,b) = (91, 129 11 4 11.4 (0.0%) 11.3 (-0.9%) 11.6 (+1.8%)

Interestingly, Table ] demonstrates that the SCA method converges to the solution faster for some points
than others. Recall that these analyses are particularly challenging because fracture depends on highly
localized deformations. The SCA method was developed to be an optimal strategy to reproduce these
local deformations using dramaticly fewer discretization points while still capturing the global response as
accurately as possible. Plasticity is typically a more diffuse form of deformation than fracture; therefore,
a larger number of clusters is required for capturing damage. This is well illustrated in Figure [I[4] where it
is clear that the stress-strain curvers are predicted very accurately but the onset of failure is less accurate.
Nevertheless, the SCA method continues to converge to the solution as the number of material clusters
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e2s increases while still showing a computation time that is several orders of magnitude lower — see Table [6]

Table 6: Comparison of computation times using a single core for SCA and DNS.

\ DNS | SCA (k1 =1024) SCA (k1 =512) SCA (k1 = 64)

Offline stage (one time computation) 31h20min 6h27min 10min
Predictive stage (per DoE point) ~ 1728h 1h36min 19min 27s
Postprocessing (per DoE point) 30min 0 0 0

620 Some notes to consider about the results in Table

630 e The computation times for SCA are obtained using a non-optimized in-house MATLAB code. The
631 potential computational gains are significantly larger if using other programming language. Paral-
632 lelization is also possible (the MATLAB code is currenly parallelized as well).

633 e Due to the large computation time needed for DNS, the time obtained for the predictive stage of the
634 DNS is estimated by multiplying the actual simulation time by the number of cores used (24). This is
635 a fair estimate since the parallelization occurs within a single compute node of the high performance

636 computing cluster;

637 e the SCA method inherently includes the “postprocessing stage” because the system of equations (B.2)

638 B.3) includes the average stress or strain of the composite as unknowns or as constraints.
639 The SCA method allows for an adaptive refinement strategy of the design problem. The problem can be

sa0 first approached by capturing the global trend of the response, as shown in Figure Then, choosing key
sa1  DoE points we can evaluate the accuracy of the method by comparing the successive refinements of SCA
sa2 predictions to the time consuming DNS (or even with experimental results), as done in Figure This
saz  validation enables the selection of an appropriate number of material clusters to use in SCA such that a
ssa smaller region of the design space can be re-sampled to find the local maxima. Figure [I5] illustrates this
sas refinement process.

646 Figure ) is a contour plot obtained with k; = 512 matrix clusters to determine the toughness for a
sz DOE of 100 points in the region highlighted in Figure [13b). Note that only 67 points of the DoE used in
s Figure [13p) were within that region. Figure [I5p) is a contour plot obtained with k; = 1024 for 50 DoE
ss0 points generated within the domain highlighted in Figure [I5h). In a) there are 33 points within the boxed
eso  Tegion.

651 As can be observed in Figure [15]| the successive refinement continues to show that there is a region along
es2 a line where the optimal toughness of the composite can be found. Successive refinements would lead to an
es3 even more accurate location of that optimal line.

esa 4. Conclusion

655 A new data-driven computational framework applicable to the design of structures and materials is
ess developed. The synergistic choices of the design of experiments (DoE), computational analysis method
es7 (whether direct numerical simulations or a suitable reduced order model), and machine learning algorithm
ess can lead to the discovery of new structures, materials, properties and models.

659 Two illustrative examples for the framework are provided. In the first example the strategy of the
eso framework is explained for a problem where the computational analyses and homogenization procedure are
se1 sufficiently fast to avoid the use of a reduced order model. This first example addressed several points:

662 1. Merits of using a non-uniform space filling design such as Sobol sequence for the DoE;
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Figure 15: Composite toughness contour plot obtained from SCA with (a) 512 and (b) 1024 matrix clusters. The
dashed box indicates the region of interest where toughness is higher: a = [100,250] MPa and b =

50, 250] MPa.
663 2. Considerations on the computational challenges involved in analyzing each DoE point, such as geometry
664 generation, periodic boundary conditions and computational homogenization;
665 3. Influence of uncertainty at the input (imperfect descriptors) and output (imperfect predictive or ex-
666 perimental tools) level. For some problems, uncertainty quantification can be a topic of significant
667 importance, especially when assessing the propagation of uncertainty from inputs to outputs;
668 4. Comparison of different machine learning algorithms.
669 The second illustrative example addressed a significantly more challenging problem: finding the influence

e70  of inelastic material phase parameters on the toughness of a three-dimensional composite material. The large
er1 computation times involved in analyzing this problem prevent the data-driven framework of using direct
e72 numerical simulations. A new numerical method previously developed, self-consistent clustering analysis
os (SCA), is shown to be a viable solution to solve this challenge within a reasonable time frame.

674 As a final note, there is a vast number of opportunities for improvement of the data-driven framework
ers  presented herein. Selection of appropriate methods and/or development of new ones can lead to tangible
e76 simplifications at each step of the framework:

677 1. Choice of the sampling strategy to perform the DoE can decrease the number of data points required
678 to find the new design or model;

679 2. Different reduced order models can be of fundamental importance to form a reasonably sized database.
680 3. The choice of the machine learning algorithm can also be of significant importance. In some cases an
681 appropriate choice can decrease the size of the database required.

682 Depending on the problem of interest, each step of the framework can assume different importance. This

es3 was effectively illustrated with the two examples explored herein.
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Appendix A. Computational analysis integration in data-driven design framework

Algorithm [T|outlines the framework, while Algorithm[2]outlines the respective function blocks. Comments
are preceded by the > symbol, files written for each analysis are denoted in italic with an arbitrary extension
.ext, and blocks of code where different scripts and methods can be used are indicated by <Insert block
of code here>. These algorithms are intended to guide the implementation process and to provide the
necessary overview to understand the particular code developed.

Algorithms [1| and [2| were implemented in MATLAB®, which is only used for the purpose of writing
the necessary files and calling the external software that executes these files automatically. The pre- and
post-processing is performed by running the MATLAB® code which writes the python codes that are then
executed in ABAQUS® pre- and post-processor, respectively. The finite element analyses files are also
written from the MATLAB® code to external files that are then executed in ABAQUS® Explicit /Implicit.
Only the reduced order model was fully implemented in MATLAB® including the computations, so there is
no need to call any external software, as discussed in publication [35]. Note that the developed MATLAB®
code calls all the external software automatically for all the points in the database, without the need for the
analyst to intervene in the process manually.

Appendix B. An overview of the self-consistent clustering analysis

Recently, a new numerical method termed self-consistent clustering analysis (SCA) [35] was proposed
by some of the authors to accelerate the predictions of linear and nonlinear reversible and irreversible
deformation of heterogeneous material RVEs. The idea is to reduce the computational cost of RVE analyses
without compromising their high-fidelity by conjugating two efforts:

o decreasing the resolution of the numerical discretization (data compression);

e counterbalancing the loss in resolution with a more robust analysis method.

The SCA method is composed of two stages — offline and online stage — that can be summarized as
follows. The offline stage consists of obtaining a reduced RVE where the domain is decomposed in a group
of material clusters. Contrary to other reduced order models, SCA only requires linear elastic analyses of the
high-fidelity RVE under three orthogonal loading conditions for two-dimensional RVEs, or six orthogonal
loading conditions for three-dimensional ones.

The linear elastic analyses of the high-fidelity RVE allow the discovery of a near-optimal domain decom-
position by grouping points that have similar mechanical behavior under any applied boundary condition.
Each group of points is called a material cluster and can be discontinuous. Material clusters are found
by computing at every point of the high-fidelity RVE the strain concentration tensor A(x), and then us-
ing a pattern recognition algorithm called k-means clustering [I00] to group the points with similar strain
concentration tensors.

Since the strain concentration tensor A(x) is invariant in elasticity for any macroscopic deformation
applied to the RVE due to the principle of superposition, an optimal domain decomposition of the RVE
is determined, as illustrated in Figure This figure presents three different reduced RVEs obtained
from the same two-dimensional plane strain high-fidelity composite RVE with a mesh of 600 x 600 finite
elements, as described in [35]. These reduced RVEs illustrate the refinement that can be achieved increasing
the number of material clusters. For clarity the figure only shows the matrix phase (phase 1).

Once the k-means clustering domain decomposition is finished, the offline stage of SCA concludes by
computing the interaction tensors D!’ between every material cluster. These tensors represent the influence
of the stress in the J-th cluster on the strain in the I-th cluster. The interaction tensor D’ is written as
an integral of Green’s function in the high-fidelity RVE domain 2 with periodic boundary conditions,

D = ﬁ /Q /Q ) ()8 (x, x')dxdx (B.1)
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Algorithm 1 Framework for database creation via integrated computational analyses

1: procedure CREATEDATABASE(DoE, Qol,UseROM, PBC, ResponseDatabase)

2: > DoFE: M microstructures, R realizations, P property sets and L loadings

3 > Qol: array with quantities of interest (Qol) to homogenize

4: > UseROM: flag signaling that a Reduced Order Model (ROM) is being used

5: > PBC: flag signaling that Periodic Boundary Conditions (PBCs) are being used
6 > ResponseDatabase: output database with homogenized Qol

7

8

9

Load DoFE > Load Design of Experiments structure variable
for n < 1, N do > Loop over N DoE points
: > Extract geometry label m and realization label r for this DoE point n:
10: m < DoFE.labels(n, 1)
11: r < DoE.labels(n,2)
12: geometry < DoE.geometry(m,r) > Load geometry descriptors of this DoE point
13: Call GETMESH(geometry, PBC) > Write FEA mesh file: Mesh.ext
14: > Extract property set label p for this DoE point n:
15: p < DoE.labels(n, 3)
16: > Load descriptors of property set p:
17: props < DoE.props(p) > Load properties of this DoE point
18: if UseROM =1 then > If using a Reduced Order Model (ROM)
19: > Run offline stage of ROM:
20: Call OFFLINEROM (props) > Get input file RO Minput.ext
21: end if
22: > Extract loading label [ for this DoE point n:
23: [ < DoE.labels(n,4)
24: load < DoE.loads(l) > Load loading of this DoE point
25: if UseROM =1 then > If using a Reduced Order Model
26: > Run online stage of ROM:
27: Call ONLINEROM (props, load) > Get output file ROMoutput.ext
28: else > If not using a Reduced Order Model
29: > Run nonlinear FEA:
30: Call NONLINFEA (props, load) > Get output file F'EAoutput.ext
31: end if
32: > Homogenize all QoI for RVE (or reduced RVE) and update database
33: Call HOMOGENIZERESULT(QoI, ResponseDatabase)
34: end for
35: return ResponseDatabase > Return database for subsequent data mining

36: end procedure
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Algorithm 2 Outline of function blocks used in Algorithm

10:
11:
12:
13:
14:
15:
16:

17:
18:

19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

1
2
3
4
5:
6
7
8
9

function GETMESH(geometry, PBC)
> Write file PreScript.ext with pre-processing script for this geometry:
<Write PreScript.ext>
Run PreScript.ext > Get mesh file Mesh.ext by calling FEA pre-processing software
if PBC =1 then > If using Periodic Boundary Conditions
> Update Mesh.ext file with periodic boundary condition constraints:
<Impose periodic boundary conditions>

end if

: end function

function OFFLINEROM (props)
<Run FEA analyses to train the chosen Reduced Order Model>
<Model reduction applied to FEA analyses> > Offline or training stage
> This offline stage returns file ROMinput.ext with the ROM calibration database
end function
function ONLINEROM (props, load)
> Run the ROM online stage for material property set props, boundary condition load, and using
file ROMinput.ext that includes the ROM offline calibration database obtained for the realization r of
the microstructure m:
<Online or predictive stage of the Reduced Order Model>
> This procedure returns file ROMoutput.ext containing the local Qol outputs over the RVE domain
Q
end function
function NONLINFEA (props, load)
> Write file with FEA conditions and local output variables. This file includes the mesh file Mesh.ext,
uses the property set props and boundary condition load:
<Write NonlinFEA.ext>
> Conduct FEA by calling external software:
Run FEAinput.ext > Get output file: F'EAoutput.ext
end function
function HOMOGENIZERESULT(Qol, ResponseDatabase)
for all ¢ € QoI do > Loop over every requested Quantity of Interest in list Qol
> Numerically solve ¢ = % fQ q d2 over the RVE (or reduced RVE) domain 2:
<Compute homogenized quantity of interest ¢>
ResponseDatabase < q > Update response database
end for
> Return database collecting every homogenized Qol:
return ResponseDatabase
end function

28



741

743

224

Figure B.16: Three different reduced RVEs showing the subdomain decompositions of matrix phase (phase 1)
obtained by A-based clustering. From left to right the number k; of clusters in the matrix phase is:
kl = ]., kl = 16, and kl = 256.

where ¢! is the volume fraction of the I-th cluster, | Q | is the volume of domain €, x!(x) is a window
function, and ®"f(x,x’) is the fourth-order periodic Green’s function associated with an isotropic linear
elastic reference material with stiffness tensor C™'. As shown in our work [35], this reference stiffness should
be considered as the stiffness of the high-fidelity RVE to ensure the self-consistency of the method and
improve convergence.

After computing the interaction tensors and finishing the offline stage, SCA can be used to predict the
behavior of the reduced RVE — online or predictive stage. This stage can be performed for any boundary
condition of choice and, more importantly, for any set of nonlinear constitutive laws with the same elastic
properties without redoing the offline stage. In other words, one can predict the plastic behavior of the RVE
without conducting any of the computationally expensive plasticity analysis of the high-fidelity RVE.

The online stage of SCA consists of solving a system of equations obtained by averaging the Lippmann-
Schwinger equation of each material cluster:

k
Ae +3 D [AO‘J — ot AeJ] — Al =0, (B.2)
J=1
from which a system of k equations is formed for all the clusters I = 1, ..., k that is completed by consid-
ering the macro-strain or macro-stress constraints (boundary conditions) applied to the reduced RVE in
incremental form:

k k
ZCIAEI = A€ or ZCIAO'I = Ao (B.3)
I=1 I=1
where Ae’ and Ao’ denote the incremental stain and stress in the J-th cluster. Note that the stress in
each cluster results from the local constitutive law of that cluster, i.e. if it is a cluster in the matrix phase
the stress results from the plastic law of the matrix.

For details on the derivation of the above system of equations and on the numerical scheme the reader
is referred to the original publication [35].

Appendix C. An overview of Kriging and Neural Networks

Appendiz C.1. Kriging

Kriging [I01], 102} [86, 03] is a nonlinear interpolation method that is based on a two-step process: 1)
establishing a structure for the input design variables; and 2) interpolating the response obtained for each
sample of the input design variables. The first step finds statistical relationships among the input design
variables x by fitting a covariance and a degree of trend to them. The second step is the actual interpolation,
similar to other methods.
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Kriging is a general and statistically rigorous method for interpolating deterministic [101] 102 [86] or even
stochastic [I04] computer simulations. Non-parametric regression methods such as polynomial and spline
interpolation do not include the first step which results in a loss of accuracy when compared to kriging
[105] T06]. In fact, spline interpolation can be shown to be equivalent to kriging with fixed covariance and
degree of polynomial trend [105].

In order to simplify the notation and without loss of generality, a single quantity of interest ¢ < ¢; is
assumed at this point. The basic idea of kriging is to approximate each scalar quantity of interest ¢ as
a realization of the random field Q(x) over the space of input variables R%». If the random field Q(x)
is known, then it is possible to approximate the quantity of interest g (x™¢*) at unsampled values in the
database, i.e. for x% ¢ {x(0,x?) . x(9} in equation .

In most kriging applications [86, [I03] it is common to restrict attention to linear predictors and to
assume that the random field is a Gaussian process. An attractive feature of the kriging predictor is that it
is the best linear unbiased predictor (BLUP) [I05] 106] in that it minimizes the mean square error (MSE)
of prediction among all linear predictors. The Gaussian process Q(x) is assumed to have parametric mean
(or expected value),

EQ(x)] = m" (x)8 (C.1)
and covariance function,
¢ (x),x7) = CovlQ(x), Qx")] (C.2)

where m(x) = [m1(x), ma(x), ... my(x)]T are u known basis functions (e.g. linear, quadratic, exponential,
etc.), and B = [B1, fa, ..., BuT is a vector of u unknown parameters. A common choice for the covariance
function ¢ (X(s),x(’”)) is the Gaussian covariance:

din

c (x(s), x(")) =o%exp Z —wj(xg-r) - x;s))Z (C.3)
j=1
where o2 is the prior variance of the Gaussian process Q(x) and w = [wy, wa, ..., wg,, ]’ are the correlation

(roughness) parameters which control the smoothness of the random field (a large w; is an indication of a
rough response surface along dimension j).

The variance o2 as well as vectors 3 and w are unknown and need to be estimated, respectively 62,
,@, and w. This estimation can be done by different methods such as maximum likelihood estimation or
cross-validation [I03]. The maximum likelihood estimation is equivalent to maximizing the logarithm of the
likelihood function,

(3,62, W] = argmax {log (£ [B, aQ,W\q} )} (C.4)
B,02,w

which is commonly considered to be the multivariate Gaussian likelihood function,

(3,62, W] = argmax

1 1
log | ———=-exp [—
B,o2,w { g(US\/2F|C| 202
where q = [¢ (x(l)) ,q (x(2)) s ey @ (X(S))]T is the S x 1 vector with the response quantity of interest for the
S samples of the input variables, M is an S X v matrix with s** row of m” (X(s)>, and Cis an S x S matrix

(a-MB)" C™* (q— MB)D } (C.5)

with each element (7, s) given by ¢ (x(’"),x(s)).

A possible approach for maximizing equation (C.5) is to represent 3 and o2 as a function of w and
then performing the maximization by setting the partial derivatives of £ with respect to 3 and ¢2 to zero,
yielding:

A=MTc'M) ' MTC! (C.6)
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52 — % (quB)TC*l (qu,é') (C.7)
Noting that equations and only depend on w (since C depends on w), replacing these
results in equation and performing the maximization leads to a prediction for w. After obtaining w,
parameters B and &2 are found from equations and , respectively. This method is known in the
literature as profiling [107].
Once the parameters w, 3, and 62 are estimated, the predicted estimate § (x™€") of the response ¢ (x"¢*)
at unsampled input points x™¢% is given by:

Q(Xnew) —m7 (Xnew) B + cT (Xnew) c! <q _ MﬂA) (C8)
and the associated mean square error (MSE) of the prediction is

MSE[G(x"")] = ¢ (x"", x"") — ¢T (x"*) C e (x") + W (MTC™'M) ™' W (C.9)
where W = m” (x"¢*) —M”C~1c (x"*") and ¢ (x"*) is an S x 1 vector whose s'" element is ¢ (x(*), x"e).
As a final note, since kriging is being used herein for interpolation, reversion to the mean [I08, [109] is of no
concern; hence, constant prior mean (i.e., m(x) =1 and u = 1) is used henceforth.

If multiple quantities of interest are defined instead of a single quantity of interest ¢ (x(s)), then the
above equations are computed d,,; times in order to obtain each ¢; (x(s)), see equation . Alternatively,
a multiresponse Gaussian Process model may be used [110].

The benefits of kriging are the ability to quantify the prediction uncertainty and to handle highly nonlin-
ear behavior. However, kriging is applicable to a relatively small number of samples due to the computational
costs associated with the inversion of the covariance matrix.

Appendiz C.2. Neural Networks

Neural networks [I11], 112} 113} 114l [115] assume that each output quantity of interest g; results from
applying a chosen transformation function f to a quantity called neuron n;,

q = f(ni) (C.10)

where each neuron n; is just a linear combination of all the input variables x;,

n; = w;;r; + b (C.ll)

and where w;; are the weights to be determined, b; the bias or offset parameters that are also unknown, and
f the transfer or activation function chosen by the analyst. Note that Einstein’s summation convention is
adopted henceforth (w;;z; = 3, wijz;).

The choice of the transfer function f depends on the data mining problem to be solved, as discussed
by Hagan et al. [II5]. Among many possibilities there are three classical examples that can be invoked:
the hard limit function, the linear transformation function, and the log-sigmoid function. The hard limit
function is a step functiorﬂ that is suitable for classification problems: when the neuron is below a certain
value the output is classified in one category, otherwise it is classified in another. The linear transformation
function consists of having the output variable to be the same as the neuron ¢; = f(n;) = n;. The log-sigmoid
function is defined as

1

Fni) = = (C.12)

"The output being 1 when the input is greater than 0, and 0 otherwise.
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and is particularly common when the neural network is used to do metamodeling or function approximation,
as in the problems considered in this article. This transfer function is differentiable, which is useful for finding
the weights w;; and biases b; via the most common iterative schemes.

Neural networks can have multiple layers. These multilayer networks are the result of an assembly of
neurons into a specific network architecture. This is possible because neurons can act on the outputs of a
previous neuron,

n;\‘H zw;\j"’lq;‘—&—bg\ﬂ ,for A\=0,1,....A -1 (C.13)

with A + 1 being the respective layer and A the total number of layers in the network. Then, each neuron
corresponds to an output variable after applying the transfer function,

@t = fn)) = f(wf‘j+1qu\ +00)  for A=0,1,...,A -1 (C.14)

where the design inputs x; intuitively correspond to the initial variables q?,

4 == (C.15)

and where the last output variables qlA correspond to the design quantities of interest ¢;,

g = a (C.16)

The special case when neurons act directly on the problem design inputs x; to get the output design
quantities of interest ¢; occurs for a single layer network (A = 1). The remaining cases require the analyst
to choose an architecture for the multilayer network, the simplest and most common of which being the
feedforward architecture. As the name suggests, in this architecture the design inputs are propagated forward
through the successive neurons until reaching the design outputs via equation .

Besides choosing the network architecture the analyst also needs to decide on how to train the neural
network from a given database. Training a neural network is the process of determining the weights wi)‘jrl
and biases b} for every neuron in each layer. Several iterative schemes have been proposed [I15], being
the most common the backpropagation algorithm proposed by Werbos [116].

In the backpropagation scheme the training data consisting of S sets of inputs z; and outputs ¢;, see (3)),
are compared with the predicted outputs ¢; obtained at each iteration of the training stage. This comparison

is called performance index and is equivalent to minimize the mean square error:

BE(w}™, 0} = (4 — i) (¢ — i) (C.17)

where the dependence of the performance index E on all the weights wf‘f

written.
Finding the weights and biases in the backpropagation algorithm is achieved by minimizing F through
successive iterations using the steepest descent algorithm:

1 and biases bg\ﬂ is explicitly

oF
A _ A
Wil = wiyl, - ey (C.18)
1) k?
OF
A A
bi|k+1: bz‘;g*’Yw (C.19)
ik

where |, denotes iteration k, and v is the step size of the steepest descent algorithm that is allowed to
change in each iteration. Computing the derivatives using the chain rule leads to:

O0E  OE on} OE ,_,

Dx  gxa A gl
owy;  Ong dwg;  On;

(C.20)
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where the partial derivatives Sk x =
k%) k3

Since two consecutive neurons are closely related, the term

0, follow from equation (C.13)).

OFE
on?}

= 5m-q])-‘ and

can be calculated using the chain rule

again:

OE  OE onM!

— = C.22
oY~ on T on? (C22)
where the last term is calculated from equations (C.13|) and (C.14)):
A A A
onpt! _ 9% w1 of (np) I of (np) (C.23)
on? P on 7 ond - P on)

. af(n) ) . . N .. .
since J;(TZ;” ) = 0 for p # 4, and noting that the summation sign is explicitly written on the RHS of the above

equation because the index p is repeated three times.

Replacing equation (C.23)) in (C.22)),

OE  OFE ( U}AHW) (C.24)

PYPD W P by
on; ony onyy

OF
on)

propagated backwards (hence the name baclkpropagation algorithm). This recurrence relation needs to be
initiated by defining the derivative of the performance index at the last layer A. Since the performance
index was defined as depending on the predicted value §;, the following result for the last layer is achieved:

OFE _ 9 [(qj — (j]) (qj — (j])] - 9 (Qi _ (jz) of (n{\) (110 sum on Z) (025)

A A A
on; on;; on;

a recurrence relation is obtained where is determined from the next value, i.e. the derivatives are

This completes the backpropagation algorithm. In summary, in neural networks with a feedforward
architecture and the backpropagation algorithm the information starts by traveling forward from the inputs
x; to the outputs g;:

¢ =g (C.26)
Gt = fwiT g + 6} for A=0,1,..,A—1 (C.27)
o =g (C.28)

then, the derivatives of the mean least square error are computed starting on the last layer:

oE L OfN (nd)
o =204 —G) —F 5~
Ini (@i — di) o

K2 K2

(no sum on %) (C.29)

and moving backwards until the first layer in a recurrent relation:

or _ oL ( 3108 (1)

AT A+1 Tp A
on; ony 6np

) Jfor A=A —1,..,2,1 (C.30)
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from which the weights and biases can be finally estimated for the iterative step k+1 by the steepest descent
algorithm from equations (C.18]) and (C.19):

Wiy = Wil — gf? kqﬁ’l (C.31)
b£\|k+1 = Z)\|k - VaanEg\ (C.32)
Appendix D. Summary of global sensitivity analysis
The main sensitivity index is written as,
&:&; (D.1)

where V(q) is the total unconditional variance defined as a summation of the partial variances [117],

iV+izm:Vz]+ (D.2)

i J>1

in

with d;;, being the total number of input variables, Z V; the sum of partial variances that include the

first-order effects of each single input variable, Z " Z Vij the sum of partial variances that include the

]>z
interaction of two input variables, etc.
The total sensitivity index is written as,
St, =85 + Z Sij + Z Sijk + ... (D3)
i#j i#j#k

with the number of indices 1, j, k, ... being limited by the total number of input variables. The higher-order
sensitivity indices are given by,

Vij...din

V(q)

Different variance estimations have been proposed by different authors, as reviewed by Saltelli et al. [99].
A common formulation when using Sobol sequence leads to the following result [99]:

Sij..din = (D.4)

Z 1 qai
S, = N Zimpiy= Ab (D.5)

N, mopd) _ gmip) 2
NLSZ(m,p,l)zl (qE& P ) ( P )

l _(m,p,l
2]\7 Zmpl) l(qfk [P q‘(ALP ))

q(mmJ) ( ~(m,p,l) —(m,p,l)>

STi = 2 (D6)
ﬁZ&Mﬂ@TW_i@w
where q( mpil) o given by,
N,
éTM:% > a™ (D.7)

¥ (mp,0)=1

and where qg P is the model output ¢ obtained for DoE point (m,p,!) included in a subset A with Nj

points of the DoE for all the input variables, q](3m’p D is the output for another subset B of the DoE with

(m,p,l)

N; points, and g, is the response for the subset A but where the values of the input variable z; are

replaced by the values of that variable in subset B.
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