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Abstract

A computational framework is developed to assist in the discovery of new material systems and models.
The framework integrates three general steps: 1) design of experiments, where the input variables describ-
ing material geometry (microstructure), phase properties and external conditions are sampled; 2) efficient
computational analyses of each design sample, leading to the creation of a material response database; and
3) machine learning applied to this database to obtain a new design or response model.

The choice of methods for the design of experiments, computational analyses, and machine learning steps
dictates if the problem of interest is solved within a reasonable time frame. A particular challenge arises when
the construction of large databases is needed but the computational analysis of each design sample is too
time consuming given reasonable accuracy requirements. This is especially true when nonlinear irreversible
processes are modeled (e.g. plasticity). A recently developed reduced order model called “self-consistent
clustering analysis” offers a solution to accelerate the material behavior predictions for such cases, enabling
the application of the computational framework to a wide range of problems, effectively addressing the curse
of dimensionality.

The future application of this computational framework to experimentally-validated predictions will lead
to the discovery of innovative materials and structures with new capabilities in an era of high-throughput
computing (“big-data”).

Keywords: design of experiments, reduced order model, self-consistent clustering analysis, machine
learning and data mining, plasticity

1. Introduction1

Structural and materials design is a highly iterative process where one seeks an optimal design for chosen2

quantities of interest. Even the simplest structures and materials are composed by multiple building blocks3

that can be combined in a large number of possibilities. These building blocks together with the range of4

boundary conditions applied to the material/structure can lead to drastically different optimal designs.5

For the particular case of material systems design, the high-dimensionality of the engineering design6

space is particularly striking when considering the overwhelming amount of possible combinations that lead7

to different materials. Meyers et al. [1] examined the extraordinary diversity in biological materials that are8

often composed of weak constituents assembled in complex structures with radically different macroscopic9

mechanical properties. Jang et al. [2] designed three-dimensional hollow ceramic nanostructures inspired by10

the observation of biological structures with hierarchical arrangements of basic structural elements. Wang11

1Contact M.A. Bessa (mbessa@caltech.edu) if interested in the data-driven framework code.
∗Corresponding author
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et al. [3] explored the design of elastic beam elements attached to an elastomeric core matrix to obtain a12

metamaterial with intriguing acoustic properties. Other examples can be encountered in investigations on13

the influence of nano- and micro-reinforcements on the behavior of elastomers [4, 5, 6], polymeric foams [7],14

metal matrix composites [8], and the effect of fiber hybridization in polymer matrix composites [9, 10].15

This large dimension of the engineering design space represents a major obstacle to accelerate the design16

process. There are simply to many possibilities to conduct experimental investigations for every conceptual17

design. Alternatively, predictive computational analyses can test a large number of conceptual designs and18

create a database with the predicted macroscopic behavior or quantity of interest. Then, data mining19

techniques can be used to extract from the database the relationship between the key descriptors of each20

design and the quantities of interest. If this relationship is properly captured by the model obtained from21

data mining, then it is possible to predict the optimal design within the sampled space.22

The work presented herein intends to demonstrate how the design process of new materials and structures23

can be accelerated through a computational data-driven framework. The data-driven framework is developed24

by integrating three different research fields as illustrated in Figure 1: 1) design of experiments (DoE); 2)25

computational analyses and homogenization; and 3) machine learning (or data mining).26

Each of the above steps is a field of research in itself where multiple achievements have been observed in27

recent years. Therefore, Sections 1.1, 1.2 and 1.3 provide a short review of the major accomplishments in28

the respective step of the proposed framework.29

1.1. Design of experiments (DoE)30

Once the problem and objectives are defined, then the first step is to perform the design of experiments31

(DoE) for characterizing the high dimensional space of input variables by a finite set of descriptors. As32

shown in Box 1 of Figure 1, three types of descriptors are identified for the design of material systems:33

microstructural (geometric) descriptors, material property descriptors, and external (boundary) conditions34

descriptors.35

The above descriptors contain information about the material building blocks and respective properties,36

as well as their geometric assembly into material microstructures. The first set of such descriptors are37

identified via microstructure characterization [11, 12, 13, 14, 14] and once defined, one can assign specific38

material properties and a set of boundary conditions, as illustrated in Box 1 of Figure 1. Each microstructure39

is characterized by a representative volume element2 (RVE) or multiple statistical volume elements3 (SVEs)40

that are generated by a fixed set of microstructural descriptors.41

Once the descriptors are selected they form a group of input design variables x for the problem,42

x = [x1, ... , xi, ... , xdin ] (1)

where din indicates the total number of input design variables x considered. These variables include all the43

above mentioned descriptors. For example, if the identified microstructure descriptors were volume fraction44

Vf and number of particles Np, the property descriptors were the Young’s modulus of the particles Ep and45

Poisson ratio νp, and the boundary conditions were given by the three applied strain components ε11, ε22,46

and ε12, then there would be din = 7 input design variables: x1 = Vf , x2 = Np, x3 = Ep, x4 = νp, x5 = ε11,47

x6 = ε22, and x7 = ε12.48

After identifying the input design variables and their respective bounds and constraints, design of ex-49

periments (DoE) can be used to effectively explore the domain. Without assuming prior knowledge of the50

problem to be solved, space-filling designs [15, 16] that treat different regions of the input variables’ domain51

equally are particularly appropriate. This type of DoE ensures that the sample points are spread out so as52

to maximize the determinant of the information matrix (i.e., to ensure D-optimality) [17].53

2A representative volume element (RVE) is a material domain randomly generated for a fixed set of material descriptors
that has the same homogenized behavior independently of the randomization process. In other words, the stochasticity of the
microstructure is not reflected on its macroscopic response.

3A statistical volume element (SVE) is a material domain that is not sufficiently large to obtain the same macroscopic
material response.
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Figure 1: Schematic of global framework for data-driven material systems discovery.

Santiago et al. [18] reviewed some of the most common space-filling design methods – e.g. low discrepancy54

sequences [19, 20, 21, 22], good lattice points [23], Latin Hypercube Sampling [24, 25] and orthogonal Latin55

Hypercube Sampling [26] – and classified them according to two metrics, the Maximin (maximizing the56

minimum Euclidean distance) and the cover measure. This comparative analysis [18] reveals that different57

optimum Latin Hypercube Samplings [24] and the Sobol sequence [21, 22] offer a good compromise between58

a regular grid and a random distribution.59

The design of experiments for all the examples considered herein was performed using Sobol sequence60

[21, 22]. Variants of the Latin Hypercube Sampling were also tested without finding significant differences,61

so they are not reported. Additional details can be found on the above mentioned literature as well as62

[15, 27]. An example of a DoE with Sobol sequence is given later, see Figure 3.63

1.2. Computational analyses and the curse of dimensionality64

The second step is to create a database with the quantities of interest q that represent the macroscopic65

response of the material for each design point x in the DoE. This database is the training data set that is66

necessary for the subsequent data mining step.67
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The database to be created consists of S sets of inputs x and outputs q,68

{(x(1),q(1)), (x(2),q(2)), ... , (x(S),q(S))} (2)

or in index notation,69

{(x(1)
j , q

(1)
i ), (x

(2)
j , q

(2)
i ), ... , (x

(S)
j , q

(S)
i )} for j = 1, ..., din and i = 1, ..., dout (3)

where dout corresponds to the number of output quantities of interest q, and din was introduced previously70

as the number of input design variables x. An example of quantities of interest q is given by the average71

second Piola-Kirchhoff stress components q1 = S̄11, q2 = S̄22, and q3 = S̄12 of two-dimensional RVEs, as in72

Section 2.73

The response database to be obtained for each DoE point cannot typically be created exclusively from ex-74

perimental analyses because even simple experiments for each design point can take several hours/days/weeks.75

An exception occurs for cases when a large experimental database is already available as the result of a co-76

ordinated effort from several experimentalists over a long period of time.77

When such experimental databases are not available, computational analyses become an attractive op-78

tion if two requirements are satisfied: 1) the predictions are sufficiently accurate, i.e. the analyses have79

high-fidelity; and 2) the high-fidelity analyses are not computationally expensive. These requirements are80

conflicting because high-fidelity simulations usually involve complex material models and fine numerical81

discretizations leading to large computational expense, as highlighted in Remark 1.82

Remark 1. Conducting high-fidelity analyses at a low computational cost represents the core challenge83

in the proposed framework. On the one hand, without accurate predictions the created database does not84

represent the real behavior of the material/structure and the model or design found by data mining is not85

guaranteed to be useful. On the other hand, without efficient analyses of every sampled microstructure,86

property set and boundary condition, then the response database becomes insufficiently small for data mining.87

88

Appendix A includes the general algorithm needed to create the response database of material systems489

by performing computational analyses of each DoE point. Each DoE point is characterized by a given90

realization r of a microstructure m, a set of properties p of the material phases (building blocks), and91

external loading conditions l. These DoE points are analyzed by the finite element method of the respective92

RVE, or by other numerical methods such as meshfree [28, 29, 30] or isogeometric [31] with the necessary93

adaptations. Subsequently, the RVE is homogenized in order to obtain the macroscopic response of the94

material characterized by a set of quantities of interest that are then stored in a database.95

In some cases standard computational analyses such as the finite element method are not sufficiently96

efficient to be directly used in the data-driven framework. Analyses that are inherently complex and require97

several days to complete in a high performance computer represent an obvious case, e.g. three-dimensional98

analyses of heterogeneous RVEs under irreversible deformation (plasticity and/or damage) [32, 33, 10, 34].99

Another case occurs even when the computational analyses are not traditionally considered costly (e.g.100

hyperelasticity) but the dimensionality of the design space is high enough to require too many sampling points101

to be evaluated in a timely manner through traditional methods – the curse of dimensionality (increasing102

the amount of input variables leads to an exponential increase of sampling points needed).103

The above mentioned cases cause a bottleneck in the database creation step of the framework, as identified104

in Box 2 of Figure 1. In the presence of such bottleneck there needs to be a viable way to accelerate the105

computational predictions without compromising accuracy for each DoE point. This can be achieved by106

using reduced order models (ROMs) in the data-driven framework, instead of performing direct numerical107

simulations (DNS).108

4The framework could be applied to macroscopic structures instead. In this case, the homogenization procedure may not
be needed.
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Conceptually, there is no important change to the data-driven framework if using a ROM instead of109

performing a DNS – see Appendix A. These are just analysis methods to determine the response of the110

system for each design point determined from the DoE. In practice, however, finding the adequate ROM111

that is both efficient and accurate for the physical process of interest can be a daunting task, especially112

because ROMs need to be trained in an offline stage before they can be predictive.113

A recent ROM proposed by Liu et al. [35] called “self-consistent clustering analysis” (SCA) was developed114

such that minimal time and computational resources are required for the offline sage, while still leading to115

accurate predictions for irreversible processes such as inelastic deformation of highly heterogeneous materials.116

An overview of this method is provided in Appendix B, but the reader is referred to the original publication117

for details [35].118

Other ROMs can be used in the data-driven framework. See for example, micromechanics-based methods119

[36, 37, 38], the transformation field analysis (TFA) [39], the nonuniform transformation field analysis120

(NTFA) [40], the principal component analysis [41, 42, 43] also known as proper orthogonal decomposition121

(POD) [44, 45], and the proper generalized decomposition (PGD) [46, 47]. Successful applications of the122

NTFA [48, 49, 50], POD [44, 51, 45, 52] and PGD [53] demonstrate the usefulness of these approaches.123

However, the simplicity of the SCA method [35] and its applicability to highly localized deformation processes124

makes it particularly attractive for integration in the framework presented herein, as demonstrated next.125

1.3. Machine learning126

Once the response database is complete, a model that captures the influence of the DoE descriptors127

on the quantities of interest can be constructed. For small databases these models can be obtained by128

simple calibration procedures or by trial and error. This has been the traditional approach for developing129

constitutive models for materials that are based on a relatively small number of experiments.130

Nevertheless, a data-driven framework often leads to large databases that need to be evaluated with131

machine learning (or data mining) methods. Machine learning is at the intersection of high-performance132

computing, statistics and data sharing [54]. This implies a continued development of computer hardware,133

statistical theories and numerical methods, as well as the creation and maintenance of open databases134

[55, 56].135

Machine learning has drawn particular attention in recent years with the advances in high-throughput136

computing technology that led to an outbreak of “big data” collection in a wide range of scientific fields137

[57, 58]. One of the most successful and widely spread achievements was the mapping of the human genome138

[59]. Other notable examples, among many possibilities, can be found in the following fields: neuroscience139

with the unveiling of secrets of the brain [60]; clinical medicine [61] by finding pathways to cure cancer140

[62, 63, 64]; biology with explanations for the presence of microbia in the human gut [65] and termites [66],141

protein analysis and genetics [67]; biotechnology with the design of new drugs [68, 69]; artificial intelligence142

with robots adapting like animals [70] and programs mastering the GO game [71]; psychology by profiling143

neuropsychosocial behavior [72]; climate change and its effects on food [73]; earthquake detection [74]; and144

economics [75].145

Machine learning is also leading to outstanding achievements in the design of materials at different length146

and time scales. On the one hand, material scientists have focused on accelerating materials design by147

probing large datasets obtained from first principle calculations [76, 77, 78] or even from failed experiments148

[79]. Initiatives such as AFLOWlib [80] or the Open Quantum Materials Database [81] are reshaping149

materials design at the quantum-scale. On the other hand, the pioneering work of Yvonnet and co-workers150

[82, 83, 84, 85] recently opened new avenues for the design of materials at larger scales (micro to macro) by151

performing the data-driven computational homogenization of nonlinear elastic composite RVEs.152

The recent work of Yvonnet and co-workers [83, 84, 85] is of particular importance to this article because153

it demonstrated for the first time that a data-driven framework can be used to determine the constitutive154

law of nonlinear elastic heterogeneous materials. In principle, their framework can be extended to nonlinear155

irreversible processes such as plasticity and damage, if the computational cost associated with the analyses156

of such RVEs is small enough to enable the creation of a large database – see Remark 1.157

Then, depending on the DoE and size of the database created, an appropriate data mining algorithm158

needs to be selected. From the countless number of methods available in the literature, two methods are159
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particularly prevalent [86]: Kriging and Neural Networks. Appendix C provides a broad overview of these160

methods but the interested reader is referred to the widely available literature on these subjects.161

2. First example: discovery of general 2D hyperelastic composite constitutive law162

Depending on the problem to be solved, a large database may be constructed by high-fidelity computa-163

tional simulations in a reasonable time frame without the need to use reduced order models to speed up each164

prediction. Yvonnet and co-workers [82, 83, 84, 85] pioneered the data-driven discovery of elastic constitutive165

relations of heterogeneous materials by using spline interpolation to discover the nonlinear elastic consti-166

tutive relation of simplified two-dimensional RVEs with a single particle/reinforcement and subjected to167

small deformation [82]. However, the authors noted that when considering large deformations they required168

the use of tensor rank decomposition (PARAFAC) [84] to create the necessary database. Using the same169

method they were able to determine the linear elastic laws of two-dimensional SVEs with small variations170

of the microstructure (composed of multiple elliptical particles) [83]. Recently, they have also investigated171

simplified three-dimensional RVEs with a single particle and under small deformation using neural networks172

for data mining [85].173

The first illustrative example presented herein is based on these works and focuses on the application174

of the proposed framework to discover the constitutive law of a two-dimensional hyperelastic composite175

reinforced by multiple elliptical particles under a large variation of microstrutural descriptors and large176

deformation. In our case, the choice of the design of experiments method allied to the fact that the com-177

putational analysis of hyperelastic composites are relatively inexpensive to perform (a few seconds) enables178

the discovery of the constitutive law as a function of all the input variables without the need of a reduced179

order model.180

2.1. Design of experiments (DoE)181

As previously introduced, the DoE has to characterize the microstructure, material properties, and182

boundary conditions. For this problem the composite microstructures were generated according to the183

following criteria: 1) each material microstructure is periodic and composed of the same type of particles184

(same shape and size); 2) particles can assume an elliptical shape where the aspect ratio of the semi-axis185

ranges from 1 to 5; 3) particle volume fraction can change from 2% to 45%; 4) particles are allowed to overlap;186

5) particle dispersion is controlled in such a way that the mean of nearest distances between particles’ centers187

is within 0.3mm and 0.5mm; 6) particles have random orientation; and 7) particles and matrix are perfectly188

bonded. The undeformed length of the RVEs was considered to be 4mm.189

Considering the above criteria, four microstructure descriptors were selected with the respective bounds:190

Vf = [2%, 45%] , Np = [40, 100] , Ar = [1, 5] , r̄d = [0.3mm, 0.5mm] (4)

where Vf is the particle volume fraction, Np the number of particles, Ar the particles semi-axis aspect ratio,191

and r̄d the mean of nearest distances measured at the particle centers. The above descriptors are subjected192

to the following constraints:193

Np <
2L2

c√
3r̄2
d

, amin = 0.01mm , bmax = 0.3mm (5)

where the first constraint is the packing limit for an RVE with characteristic length Lc, while the other two194

constraints are for the size of the minimum minor semi-axis of the elliptical particles amin and the maximum195

major semi-axis bmax.196

Figure 2 presents a schematic of the microstructure. Each realization for each RVE is created by randomly197

generating the center position and semi-axis orientation for each elliptical particle and by excluding the198

particles that violate the above constraints.199

For this problem only one specific material is considered for each constituent without changing its prop-200

erties, i.e. there is no need to define material descriptors. The matrix material is a soft compressible201
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Figure 2: Schematic of composite RVE geometry.

elastomer modeled by the Arruda-Boyce [87] hyperelastic constitutive model, while the particles are a stiff202

compressible Neo-Hookean elastomer.203

The Arruda-Boyce [87] constitutive law for the matrix material has a strain energy density function that204

depends on three polymer properties: the initial bulk modulus K0, the initial shear modulus µ0, and the205

stretch at which the polymer chain network becomes locked λm. The energy density function is then given206

by:207

ψ (C) = µ

5∑
i=1

αiβ
i−1
(
Îi1 − 3i

)
+
K

2

(
J2 − 1

2
− ln J

)
(6)

where parameters β = 1
λ2
m
, α1 = 1

2 , α1 = 1
20 , α3 = 11

1050 , α4 = 19
7000 , α5 = 519

673750 are obtained using the first208

five terms of the inverse Langevin function, J = det(F) is the Jacobian determinant of the deformation gra-209

dient F, Î1 = I1J
−2/3 depends on the first invariant I1 = Tr(C) of the the right Cauchy-Green deformation210

tensor C = FTF, and parameter µ is calculated from the material properties λm and µ0:211

µ =
µ0

2

(
5∑
i=1

iαiβ
i−1Îi−1

1

)−1

= µ0

(
1 +

3

5λ2
m

+
99

175λ4
m

+
513

875λ6
m

+
42039

67375λ8
m

)−1

(7)

Note that the right Cauchy-Green deformation tensor C can be written as a function of the Green strain212

E as follows:213

C = 2E + 1 (8)

with 1 being the identity matrix. For a review on the essentials of continuum mechanics and hyperelastic214

models see the book by Belytschko et al. [88].215

The matrix material properties considered for the Arruda-Boyce model are:216

Kmat
0 = 800 MPa , µmat0 = 180.5 MPa , λmatm = 2.8 (9)
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The Neo-Hookean constitutive law for the particles is defined by the following strain energy density:217

ψ (C) =
µ0

2

(
Î1 − 3

)
+
K0

2
(J − 1) (10)

where as before µ0 is the initial shear modulus, K0 is the initial bulk modulus, J is the Jacobian determinant,218

and Î1 = I1J
−2/3.219

The particle material properties considered for the Neo-Hookean model are:220

Kptc
0 = 4.0 GPa , µptc0 = 1.9 GPa (11)

For any hyperelastic model the second Piola-Kirchhoff stress S is directly related to the strain energy221

density:222

S = 2
∂ψ(C)

∂C
=
∂ψ(E)

∂E
(12)

from which the expressions for the second Piola-Kirchhoff stress of each hyperelastic model can be triv-223

ially determined, see [88]. Similarly, the tangent modulus also called the second elasticity tensor CSE is224

determined by computing the Hessian:225

CSE = 4
∂2ψ(C)

∂C∂C
=
∂2ψ(E)

∂E∂E
(13)

The final descriptors needed for the DoE are given by the boundary conditions applied to the RVEs.226

Since the goal is to find the macroscopic constitutive law of the hyperelastic composite by homogenizing227

the micro-scale RVEs, the macroscopic strain measure of the material needs to be converted to a boundary228

value problem of the RVE.229

Computational homogenization of multi-scale analysis has received significant attention in the last decade230

[89, 90, 91, 92, 50]. Broadly, computational homogenization can be classified as first-order and higher-231

order. First-order computational homogenization [89, 91] assumes that the consecutive scales are separate;232

therefore, the macroscopic kinetic and kinematic quantities are obtained from a volume average of the233

micro-scale quantities of the RVE. Higher-order computational homogenization [90, 92] does not assume234

scale separation; hence, the local kinematic and kinetic quantities of the RVE are homogenized within a235

finite region of the macroscopic scale by considering their Taylor series expansion with the desired number236

of higher-order terms, i.e. conserving higher gradients of the local fields of interest.237

A first-order computational homogenization scheme is used herein, i.e. the characteristic length scale at238

which the macroscopic constitutive law is analyzed is assumed to be significantly larger than the domain of239

the RVE Ω. In this scheme the macroscopic deformation tensor F̄ is used to formulate a boundary value240

problem of the RVE, preferably periodic as discussed in [90],241

u (X) =
(
F̄− 1

)
·X + ũ (X) on ∂Ω (14)

where X is the reference position vector on the boundary of the RVE ∂Ω, u (X) is the corresponding242

displacement and ũ (X) signals the periodicity of the displacement field. If ũ (X) = 0 then uniform boundary243

conditions could be used instead, although these are not used here because multiple authors have concluded244

that the overall properties of the RVEs are better estimated using periodic boundary conditions [50, 93, 90,245

94, 95].246

In this problem the macroscopic constitutive law to be found relates the macroscopic Green strain Ē (or247

equivalently, the macroscopic right Cauchy-Green deformation C̄) to the macroscopic second Piola-Kirchhoff248

stress S̄ via the macroscopic strain energy density ψ̄
(
Ē
)
,249

S̄ =
∂ψ̄(Ē)

∂Ē
(15)
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and with the macroscopic tangent modulus given by250

C̄SE =
∂2ψ̄(Ē)

∂Ē∂Ē
(16)

Therefore, the macroscopic deformation gradient F̄ necessary to impose the periodic boundary conditions251

from equation (14) needs to be obtained from the macroscopic Green strain Ē. As discussed by Yvonnet252

et al. [84], the macroscopic strain energy density ψ̄ is invariant under rotations R̄, so the macroscopic253

deformation gradient can be computed by restricting the RVE rigid body rotation (i.e. R̄ = 1) and then254

calculating the principal square root of the right Cauchy-Green deformation tensor,255

F̄ = Ū = C̄1/2 =
(
2Ē + 1

)1/2 (17)

from which the periodic boundary conditions of the RVEs can be defined by equation (14).256

The solution of the boundary value problem is then obtained from the computational analyses of the257

different RVEs, from which the macroscopic quantities of interest are computed by homogenization of the258

microscopic quantities of interest. In particular to this problem, the quantity of interest is the strain energy259

density ψ̄ as a function of the Green strain Ē. With this quantity it is possible to predict the second Piola-260

Kirchhoff stress S̄ of the RVE and compare it to the homogenization of the microscopic S over the RVE261

domain Ω.262

As thoroughly explained by Yvonnet et al. [84], the homogenized stress measures have to be obtained263

from the first Piola-Kirchhoff stress P due to the Hill-Mandel lemma,264

〈P : F〉 = 〈P〉 : 〈F〉 = P̄ : F̄ (18)

where 〈•〉 indicates a volume average integral over the undeformed RVE domain Ω0. Hence, the homoge-265

nization of the second Piola-Kirchhoff stress S is computed from the first Piola-Kirchhoff stress as follows,266

S̄ = F̄−1 · P̄ (19)

To complete the DoE step, the range of macroscopic Green strains Ē needs to be defined. These strains267

are then converted to the macroscopic deformation gradient from equation (17) so that the periodic boundary268

conditions can be applied to the RVEs via equation (14). The solution to the boundary value problem of269

the RVEs is then found from the computational analyses, from which the subsequent homogenization of the270

strain energy density is performed.271

The bounds of the three macroscopic Green strain components considered herein are:272

Ē11 = Ē22 = [−0.1, 1.5] , Ē12 = [−0.3, 0.3] (20)

under the following constraint:273

−1 ≤ 2Ē12√
(2Ē11 + 1)(2Ē22 + 1)

≤ 1 (21)

due to the limitation on the angle between the stretch directions of the Green strain arising from finite274

deformation theory.275

Figure 3 shows a DoE obtained from Sobol sequence [21, 22] for the three strain components with the276

bounds given in (20) and under the constraint given in (21) without considering additional descriptors, i.e.277

with the following input variables x1 ≡ Ē11, x2 ≡ Ē22, and x3 ≡ Ē12. A DoE with more descriptors, for278

example the 4 microstructural descriptors previously listed plus these 3, is obtained in a similar way but the279

input variables domain has dimension 7. This figure illustrates three useful characteristics of Sobol sequence:280

1. The sample points are spread out non-uniformly over the input variables space;281

2. There are no coincident projections of the sample points in the different hyperplanes of the input282

variables space;283
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Figure 3: Design of experiments with 1000 points for the three boundary condition descriptors using Sobol sequence.
Red dots indicate the first 50 points, green dots indicate the next 150 points, and blue dots the remaining
800 points.

3. The input variables space is successively refined as the Sobol sequence progresses.284

The first point is connected with the second, since the non-uniformity of this space filling design is285

associated with the fact that all the points are distinguishable in any of the three projection planes of the286

three descriptors – see Figure 3. This occurs for a DoE of any dimension generated by Sobol sequence. Note287

that if a regular grid of sample points was used instead, there would be multiple coincident point projections288

in the different hyperplanes which deteriorates the data mining and metamodeling process [86, 16, 18].289

The third point is significantly useful in practice and is illustrated by the different colors for the 1000290

DoE points shown in Figure 3. The first 50 points in this Sobol sequence are shown in red, where it is291

clear that the points are spread out through the input variables space. The next 150 points are shown in292

green, demonstrating that the space is successively refined by points that never coincide with the previous293

points. The remaining 800 points (in blue) also clearly show this successive refinement, always guaranteeing294

a space filling design. This is useful because one does not know a priori how many sample points in the295

DoE lead to a good model determined by the data mining procedure. Therefore, consecutive subsets of a296

DoE will be space-filling designs themselves. The consecutive increase of the number of DoE points in the297

sequence is then associated to a global refinement of the design space, exploring regions that were previously298

unexplored.299
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2.2. Computational analysis and data mining300

The created DoE uses a space filling design and no prior knowledge of the hyperelastic composite RVEs is301

assumed. In reality, for this illustrative problem it would be possible to simplify the data mining process by302

reducing the dimension of the DoE. For example, the constitutive models of the two phases of the composite303

only depend on the two invariants of the Green strain, i.e. only the two principal components of the Green304

strain actually influence the constitutive behavior. This means that the shear component is redundant since305

one can always rotate to the frame of principal strains.306

Most microstructural descriptors considered are also expected to have a small influence on the response,307

except the volume fraction. Volume fraction affects the response significantly because the reinforcements308

are stiffer than the matrix and the average response of the composite is mostly related to the amount of309

reinforcement embedded in the matrix, not to its particular shape. The other microstructural descriptors310

influence the strain concentration around the particles but since there is no plasticity or damage in this311

problem those effects are largely eliminated after homogenization.312

Nevertheless, this example provides an important basis to assess the capabilities of the data-driven313

framework applied to materials design. The models found from data mining should be able to characterize314

the response of the material accurately, but also to inform about the influence of the different descriptors on315

the response. The following three step approach is proposed when first applying the data-driven framework316

to a specific problem.317

2.2.1. Step 1: uncertainty quantification318

As previously described, after the completion of the DoE the representative microstructures are generated319

for each DoE point so that the computational analyses can be performed, recall Figure 1. However, a fixed320

set of microstructural descriptors may not uniquely characterize a material microstructure. In fact, for the321

7 dimension DoE used in this example – see (4) and (20) – one can fix all the microstructural descriptors322

(volume fraction, number of particles, elliptical semi-axis aspect ratio, and mean of nearest distances) and323

still generate multiple realizations that have different particle positions and orientations – see Figure 4.324

(a) Realization 1 (b) Realization 2

Figure 4: Two different realizations of the microstructure for the following fixed set of microstructural descriptors:
Vf ≈ 17%, Np = 84, Ar ≈ 4.1, and r̄d ≈ 0.32mm. Note that the matrix material is not shown for clarity,
and that both microstructures are periodic.

The first step of the procedure is then to quantify the uncertainty of the response of each microstructure325

for a range of other descriptors (boundary conditions and/or material properties). The length scale of the326

microstructure domain Lc is strongly associated with the uncertainty of the response. A larger Lc tends327

to eliminate the stochastic effects which implies that the domain is representative (RVE), while a smaller328

Lc leads to structures that have different responses (SVEs). Naturally, larger domains imply a greater329

computational cost per simulation - see Remark 2.330
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Remark 2. The analyst needs to decide whether to conduct less expensive analyses for multiple realizations331

of each DoE point (multiple SVEs) and subsequently average them, or to simulate one realization per DoE332

point (RVE) knowing that those simulations have a higher computational cost.333

In this example the characteristic length Lc of the microstructure is considered large enough if the average334

coefficient of variation of the homogenized strain energy density ψ̄
(
Ē
)
and of the Euclidean norm of the335

homogenized second Piola-Kirchhoff stress ||S̄|| =
√
S̄2

11 + S̄2
22 + S̄2

12 are approximately less than 5%.336

In general, the maximum coefficient of variation criterion for any average quantity of interest q̄i of the337

RVE is then written as,338

max
[
CV

(
q̄

(m,p,l)
i

)]
. 5% , ∀m,p,l (22)

where q̄(m,p,l)
i is the homogenized quantity of interest for microstructure m, property set p and boundary339

condition l. The coefficient of variation is defined as,340

CV
(
q̄

(m,p,l)
i

)
=
σ
(
q̄

(m,p,l)
i

)
¯̄q
(m,p,l)
i

(23)

where σ
(
q̄

(m,p,l)
i

)
is the standard deviation of all the realizations R for each microstructure m, property set341

p and boundary condition l,342

σ
(
q̄

(m,p,l)
i

)
=

√√√√ 1

R

R∑
r=1

[(
q̄

(r,m,p,l)
i − ¯̄q

(m,p,l)
i

)2
]

(24)

and ¯̄q
(m,p,l)
i is the mean of the homogenized quantity of interest for all the realizations R,343

¯̄q
(m,p,l)
i =

R∑
r=1

q̄
(r,m,p,l)
i

R
(25)

with q̄(r,m,p,l)
i being the homogenized quantity of interest for realization r of the microstructure m, property344

set p and boundary condition l.345

The coefficient of variation is meaningful for non-negative quantities of interest, as for the strain energy346

density and the norm of the components of the second Piola-Kirchhoff stress, but not for the individual347

stress components. So, in this case q̄1 ≡ ψ̄
(
Ē
)
and q̄2 ≡ ||S̄||.348

The estimation of the uncertainty of the response of each microstructure was then performed by gen-349

erating R = 20 realizations for each of the M = 4 different microstructures described in Table 1. All the350

microstructures were subjected to the same L = 50 deformation states obtained by Sobol sequence, similar351

to the randomization shown in Figure 3. As mentioned in the previous section, only one set P = 1 of352

material properties was considered for the particles and matrix in this problem, see equation (9) for the353

matrix properties and equation (11) for the particles.354

Table 1: Four microstructures/RVEs for uncertainty quantification.

Vf Np Ar r̄d
RVE 1 4.7% 47 4.9 0.50 mm
RVE 2 17.1% 84 4.1 0.32 mm
RVE 3 29.5% 48 1.3 0.49 mm
RVE 4 39.0% 84 1.4 0.33 mm
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Remark 3. The estimation of uncertainty of this problem involved a total of R×M×P×L = 20×4×1×50 =355

4000 simulations for each characteristic length of the microstructure Lc. The largest characteristic length356

simulated was Lc = 4mm, corresponding to an approximate computation time of 0.5min for generating each357

finite element mesh and 4min to perform the respective analysis. The output files of the 4000 analyses358

occupied more than 80GB of storage space in the high performance computing cluster, and the simulations359

were conducted in parallel with only 1 processor each. These output files were subsequently homogenized to360

produce the database for the uncertainty quantification analysis.361

Figures 5a) and b) illustrate the uncertainty for each macroscopic deformation state, i.e. each boundary362

condition l, applied to the different realizations of the 4 microstructures for the largest characteristic length363

Lc = 4mm that approximately satisfied criteria (22). For clarity, the states of deformation in both figures364

were sorted such that the quantities of interest are in ascending order. The figures include a box for each365

deformation state and microstructure where the central mark is the median of the quantity of interest, the366

edges of the box are the 25th and 75th percentiles, and the top and bottom dashed lines represent the367

maximum and minimum value of the quantity of interest, respectively.368

The maximum coefficient of variation of the macroscopic strain energy density ψ̄ and of the norm of the369

second Piola-Kirchhoff stress ||S̄|| for each microstructure with Lc = 4mm is shown in Table 2.370

Table 2: Uncertainty quantification of strain energy density and PK2 stress of four RVEs.

max
[
CV

(
ψ̄(m,p,l)

)]
max

[
CV

(
||S̄(m,p,l)||

)]
RVE 1 0.6% 1.3%
RVE 2 1.4% 2.9%
RVE 3 1.0% 2.4%
RVE 4 2.3% 5.5%
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(a) Uncertainty of strain energy density.
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(b) Uncertainty of the norm of second Piola-Kirchhoff stress.

Figure 5: Uncertainty quantification of (a) strain energy density and (b) norm of the stress components for 4 RVEs
with L = 4mm subjected to the first 50 deformation states obtained from the Sobol sequence. Note that
the deformation states were sorted such that the potential energy (a) and the the norm of the stress
components in (b) is in ascending order. The descriptors of the 4 RVEs are included in Table 1.

The uncertainty of the response for each microstructure shows that the stress measure has higher un-371

certainty than the strain energy density, as expected. This follows directly from the fact that the stresses372
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are derivatives of the strain energy density with respect to the strain measure, as pointed out previously,373

increasing the uncertainty. Moreover, observing Figures 5a) and b) it is clear that the microstructures with374

higher volume fraction lead to a higher uncertainty, which is also expected [96, 97, 32].375

This initial estimation of uncertainty for the problem before evaluating a larger input variables space376

with all the descriptors is important when the problem under analysis involves large quantities of data. Since377

the uncertainty is sufficiently low, the data mining process can continue using a single realization for each378

microstructure, which decreases significantly the number of simulations necessary to determine the material379

constitutive law for a large number of boundary conditions and microstructures.380

2.2.2. Stage 2: data mining for a single RVE381

Having found that a single realization for each microstructure with characteristic length Lc = 4.0 mm382

characterizes reasonably well the response for any boundary condition, it is now useful to estimate the383

convergence obtained in the approximation of the composite constitutive behavior. Before solving the384

problem for the DoE of largest dimension with varying microstructure and boundary conditions, it is useful385

to analyze in detail the response for a typical microstructure. This preliminary analysis provides information386

on the adequacy of the space-filling design for the boundary conditions, showing if local refinements are387

necessary and giving an estimate for the number of DoE points needed to predict the composite response388

within a certain accuracy.389

Hence, a single RVE for a specific microstructure is considered under a larger number of boundary condi-390

tions than the ones used for uncertainty quantification. The selected RVE has the following microstructural391

descriptors:392

• RVE 5: Vf ≈ 21.0%, Np = 60, Ar ≈ 3.8, and r̄d ≈ 0.4mm393

A DoE with 1, 000 points was created from a Sobol sequence where each DoE point corresponds to a394

different boundary condition applied to the RVE, while the remaining descriptors are fixed. One thousand395

simulations of RVE 5 are conducted and the homogenized strain energy density is approximated by the two396

data mining methods introduced previously: kriging and neural networks. The three stress components are397

then determined by differentiating the approximated homogenized strain energy density with respect to the398

Green strain components.399

An error metric needs to be defined to estimate the accuracy of the approximation for the quantities of400

interest determined from each data mining method. Relative error metrics should be defined for non-negative401

quantities, so the error of the stress predictions is calculated for N points not included in the training data402

as follows,403

ES̄ =
1

N

N∑
(m,p,l)=1

||ˆ̄S(m,p,l) − S̄(m,p,l)||
||S̄(m,p,l)||

(26)

where N is the number of data points used for validation, ˆ̄S(m,p,l) is the predicted homogenized stress for404

microstructure m, property set p and boundary condition l, and S̄(m,p,l) is the observed value from the405

actual finite element analysis of the RVE. Note that each point is labeled as (m, p, l), corresponding to a406

particular microstructure, property set and boundary condition.407

The error of the strain energy density is defined similarly,408

Eψ̄ =
1

N

N∑
(m,p,l)=1

∣∣∣ ˆ̄ψ(m,p,l) − ψ̄(m,p,l)
∣∣∣∣∣ψ̄(m,p,l)

∣∣ (27)

In this case the models are determined for the same microstructure and property set, so m and p do not409

change and all the DoE points correspond to changing the boundary conditions l.410

Convergence for this problem is estimated by determining different kriging and neural network models411

for an increasing number of successive DoE points in increments of one hundred until a total of eight hundred412
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Figure 6: Error of the strain energy density and the norm of the second Piola-Kirchhoff stress predicted by kriging
and neural networks models of RVE 5 when considering different DoE sizes.

points. The last two hundred points of the initial DoE are used for validation, i.e. N = 200 in equations413

(26) and (27).414

Figure 6 shows the errors of ψ̄ and ||S̄|| obtained for both methods using different DoE sizes. From415

the figure it is clear that both methods lead to similar approximation errors for the strain energy density416

(below 0.5%) and stresses (approximately 10%). The strain energy density is accurately approximated even417

considering a small DoE. However, the second Piola-Kirchhoff stress of the RVE for different deformation418

states requires a larger DoE since it is related to the first derivative of the strain energy density. As expected,419

considering more DoE points in the data mining process leads to more accurate predictions.420

The largest errors shown in Figure 6 occur for highly localized regions of the deformation space, in421

particular for large compression combined with large shear. These correspond to regions where the two422

principal Green strains are significantly negative (below −0.1) and where the deformation space is not423

sampled adequately. Recall Figure 3 where it is clear that even for a DoE of one thousand points the424

compressive region is sampled only with a few points due to the small size of this region. Local refinement425

of the DoE in this region reduces the error of the models, as shown in the next subsection for the largest426

DoE analyzed herein.427

Figures 7a), b) and c) show the approximations obtained when deforming the RVE for three loading428

paths that evolve linearly from the undeformed configuration until different limits of the deformation space,429

see (20). For clarity all stress components are plotted as a function of the largest deformation strain E11.430

Since the approximations obtained by kriging and neural networks are very similar when considering the431

same number of DoE points, the results for the three deformation paths are shown for the kriging model432

considering six hundred DoE points and for the neural networks model considering eight hundred points.433

Otherwise, the results from the two methods are difficult to distinguish in the entire deformation space.434

The agreement between both models and the finite element analyses of the RVE is good for all three435

cases. Note that the models are determined for the scattered points of the DoE and that these do not436

coincide with the predicted points in the figures. Particular attention should be given to Figure 7a) that437

shows the result obtained for the largest tensile deformation along direction 1, the largest compression along438

direction 2 and greatest shear. It can be seen that for points closer to the bounds of the deformation space439

the solution obtained with six hundred DoE points is less accurate.440

In addition, important information about the influence of the inputs on the model outputs can be obtained441

via global sensitivity analysis, e.g. variance based methods [98, 99]. In variance-based sensitivity analysis442

there are two indices that are typically used to measure sensitivity: the first-order or main sensitivity index443

Si; and the total effect or total sensitivity index STi . Appendix D offers a brief description on how these444

indices can be determined. Both indices are within [0, 1] and indicate the influence of the corresponding445

input on the output (no influence if 0; strong influence if 1). For any input variable xi, the inequality446

Si ≤ STi is satisfied, and the difference between the two measures quantifies how much interaction xi has447
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Ē11

0

50

100

150

200

S̄
ij
(M

P
a
)

FEA

Kriging

Neural Networks

S̄12

S̄22

S̄11

(b) Final deformation state: Ē11 = 1.5, Ē22 = 1.0 and
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Ē11

-150

-100

-50

0

S̄
ij
(M

P
a
)

FEA

Kriging

Neural Networks

S̄12

S̄11 & S̄22

(c) Final deformation state: Ē11 = −0.1, Ē22 = −0.1
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Figure 7: Comparison of the stress-strain response of RVE 5 from the undeformed configuration until three different
final deformation states. The kriging model shown in a dashed line is obtained for 600 DoE points, while
the neural networks model (circles) is obtained for 800 DoE points.

with other inputs.448

Figure 8 and Table 3 show the sensitivity indices calculated for the kriging model using the entire DoE449

of one thousand points. As can be observed the sensitivity of the response is basically the same for E11450

and E22 since the RVE is isotropic and the bounds are symmetric. Interestingly, the sensitivity to E12 is451

negligible which shows that for the majority of the deformation space the influence on the response is small.452

This may be related to the fact that E12 is not necessary to determine the constitutive law, since there are453

only two invariants of deformation.454

2.2.3. Step 3: data mining for the general problem455

Finally, after estimating the uncertainty associated with different microstructures and the number of456

boundary conditions that are necessary to reasonably determine the constitutive law of a single microstruc-457

ture, the complete analysis for the 7 descriptors previously discussed can be conducted, see equations (4)458

and (20).459

Taking advantage of the fact that the Sobol sequence does not have coincident DoE points projected460

in the different hyperplanes, a possible way to minimize the amount of DoE points is to create a seven461

dimension DoE where each point corresponds to a different combination of all the descriptors. In practice462
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Table 3: Sensitivity analysis for RVE 5 (rounded to third decimal place).

Ē11 Ē22 Ē12

Si 0.504 0.483 0.002
STi 0.514 0.493 0.007

0

0.2

0.4

0.6

E11 E22 E12

Main SI Total SI

Figure 8: Sensitivity indices of the kriging model of RVE 5 obtained for 1000 DoE points. The values of the
sensitivity indices are shown in Table 3.

this means the creation of one finite element mesh for each distinct RVE of the microstructure and each463

distinct boundary condition applied to that RVE. The alternative would be to do a cross-design, where464

each microstructure would be subjected to the same boundary conditions as was done previously for the465

uncertainty quantification analyses. A cross-design is particularly inefficient [86], especially with the kriging466

method due to the need to invert the covariance matrix.467

Testing hundreds of thousand or even millions of DoE points is possible, but that may be an unneces-468

sary effort since the sensitivity of the response to the different descriptors is unknown and there may be469

redundancy. A DoE of 10, 000 points is used such that the database could be created in less than one day of470

computation (an average of fifty processors were used simultaneously; the database from the RVE analyses471

had an approximate size of 0.5TB). This number of DoE points is sufficiently large to limit the use of kriging472

because the inverse of the covariance matrix consumes too much computer memory. Hence, data mining is473

performed herein only using neural networks.474

In addition to the 10, 000 DoE points that define the space-filling design, a local refinement of the input475

variables space is included in the highly localized regions where the prediction errors occurred. This local476

refinement was obtained such that the optimality of the Sobol sequence would not be lost. The procedure477

was as follows:478

1. 20, 000 points were generated from a Sobol sequence of dimension 7, and the first 10, 000 points were479

included in the DoE;480

2. Of the remaining 10, 000 points the only ones that were included in the DoE obeyed the following481

constraints:482

• Vf > 30%483

• Vf > 40%, or Ē12 < −0.2 or Ē12 > 0.2484

• Ē11 < 0 or Ē22 < 0 or Ē12 < −0.25 or Ē12 > 0.25485

These constraints correspond to regions with large shear and volume fraction, as well as regions with486

compression and large shear. Of the last 10, 000 of the 20, 000 points only 377 satisfied the above constraints.487
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Therefore, the entire DoE included 10, 377 points which led to a significant decrease of the overall error at488

those localized regions, as seen in Figure 9 when compared to Figure 6.489
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Figure 9: Error of the strain energy density and the norm of the second Piola-Kirchhoff stress predicted by neural
networks models of the 7 dimension DoE. Note that, as before, stresses are directly calculated from
differentiating the strain energy density approximated from neural networks.

Figure 9 presents the convergence of the neural networks models obtained by successively increasing the490

size of the DoE. The last 2, 500 DoE points are used for validation of the models. A similar trend to the491

single RVE problem is observed, where the strain energy density is accurately predicted even for a relatively492

small number of DoE points, while the prediction from the second Piola-Kirchhoff stress requires a larger493

DoE. These results are acceptable considering the uncertainty associated to each RVE and that a large input494

variables space is being explored.495
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Figure 10: Sensitivity indices of the neural networks model of the 7 dimension DoE with 10, 377 points. The values
of the total sensitivity indices are shown in Table 4.

Table 4: Sensitivity analysis for 7 dimension DoE (rounded to the third decimal place).

Vf Np Ar r̄d E11 E22 E12

Si 0.117 0.000 0.007 0.000 0.414 0.411 0.000
STi 0.160 0.001 0.016 0.001 0.439 0.434 0.001

The sensitivity indices determined for the DoE with 10, 377 points are shown in Figure 10 and Table 4.496

The influence of particle volume fraction on the response is very significant, as expected. The number of497

particles and their dispersion, at least within the bounds considered in this problem, have small impact on498
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the response. The aspect ratio of the particles has a noticeable influence, though inferior to the influence of499

the volume fraction. As observed before, the shear component of the strain also has a negligible influence500

on the global response. These general trends are in part expected, as discussed in subsection 2.2, but the501

actual contribution and the relative importance of the different descriptors would be challenging to predict502

a priori.503

(a) Influence of particle volume fraction Vf on potential
energy (Np = 60, Ar = 3, r̄d = 0.4mm, E12 = −0.3)

(b) Influence of particle aspect ratio Ar on potential en-
ergy (Vf = 0.4, Np = 60, r̄d = 0.4mm, E12 = −0.3)

Figure 11: Variation of potential energy as a function of different (a) particle volume fractions and (b) particle
aspect ratios, while maintaining the remaining descriptors fixed.

Figure 11 illustrates the dependence of the macroscopic strain energy density on (a) the volume fraction504

and (b) the aspect ratio of the particles for a particular set of descriptors. Figure (a) reinforces the findings505

that the volume fraction has the most significant influence on the macroscopic strain energy density for the506

entire range of deformation states, while figure (b) shows that the variation caused by the aspect ratio of507

the particles is less pronounced.508
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Figure 12: Variation of potential energy as a function of different (a) particle volume fractions and (b) particle
aspect ratios, while maintaining the remaining descriptors fixed.
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The predictions for the stress-strain behavior of the composite for components 11 under the same de-509

scriptors and for Ē22 = 0 are shown in Figure 12. Once again, the influence of volume fraction and aspect510

ratio is illustrated by these figures. The effect of the aspect ratio is in part given by the fact that some long511

elliptical particles are forced to bend when the RVE is deformed.512

3. Second example: design of 3D inelastic composite via self-consistent clustering analysis513

Contrary to what was shown in the previous example, there are several structural and materials science514

problems where computational analyses are significantly time consuming. This poses an additional challenge515

that can be overcome with advanced reduced order models. As previously mentioned, the authors propose516

the use of the self-consistent clustering analysis (SCA) – see [35] and Appendix B – instead of the direct517

numerical simulations (DNS) of the high-fidelity RVEs.518

A three-dimensional RVE is considered for a particle reinforced composite with a particle volume fraction519

of 20%. The same microstructure was used in the RVE introduced in [35]. The RVE has 80mm of length520

and each spherical particle has a radius of 13.5mm. The high-fidelity RVE is analyzed by the finite element521

method using a mesh of 512, 000 elements that was shown previously [35] to lead to similar results as a coarser522

mesh. The RVE analysis is considered as the reference solution, and here both phases of the composite are523

assumed inelastic following the von Mises (J2) elasto-plastic model. Recall that the yield surface of this524

model is given by,525

f = σvm − σY (εp) 6 0 (28)

with σvm =
√

3J2 being the von Mises equivalent stress dependent on the second invariant of the deviatoric526

stresses J2, and σY being the yield stress determined from the respective hardening law.527

Hence, the matrix material (labeled as phase 1) has the following properties:528

E1 = 100 GPa , ν1 = 0.3 (29)

with the hardening law given by:529

σY1
(εp1) = 100 + 300 (εp1)

0.4 MPa (30)

where εp1 is the equivalent plastic strain of the matrix phase.530

The properties of the reinforcement material (labeled as phase 2) are:531

E2 = 500 GPa , ν2 = 0.19 (31)

with the hardening law given by:532

σY2(εp2) = a+ b (εp2)
0.2 MPa (32)

where εp2 is the equivalent plastic strain of the particle phase, while a and b are the two input design variables533

for the problem. Recall that parameter a is related to yielding, while b is related to hardening of the particles.534

The goal of this illustrative design problem is to find the properties a and b of the particle phase such535

that the toughness of the composite is maximized. Toughness is defined as the integral of the stress-strain536

curve obtained from a uniaxial tension test of the composite material before fracture. A simplified fracture537

model is considered for the composite material:538

• The composite RVE fails when 10% of the matrix phase has a maximum strain component above 0.07;539

• No damage model is implemented, i.e. this composite is considered brittle;540

• The particles are considered to fail at a significantly higher strain level, i.e. the composite fails uniquely541

by matrix failure.542

20



The above considerations were made so that the results could be easily interpreted for this illustrative543

example. Any fracture model could have been implemented, and one or more damage laws could have been544

considered. However, this would increase the number of model parameters without any benefit for a first545

demonstration of the framework.546

Maximizing material toughness is the result of two competing factors: ductility and strength. If the547

particle phase has high yield strength (remaining elastic) the overall strength of the composite increases548

but its ductility decreases because the matrix phase is highly strained and fails prematurely. On the other549

hand, if the particles have low yield strength and hardening but high ductility the matrix material is less550

strained for the same overal composite strain, which increases ductility of the composite at the expense of551

decreasing its strength. Finding a compromise between strength and ductility of the reinforcement particles552

of the composite is expected to lead to a maximum composite toughness.553

Note that since the problem involves the assessment of the local (matrix) strains to determine fracture554

in a three-dimensional composite with both phases being inelastic, the solution to this problem would be555

difficult to obtain without a data-driven framework such as the one proposed herein.556

The approach to this problem is similar to the one outlined in the previous section. The only difference557

is that the predictions of each data point are not conducted directly from the high-fidelity RVE. Instead, the558

high-fidelity RVE is loaded in 6 orthogonal loading conditions within the elastic regime in order to complete559

the offline stage of SCA, so that SCA can then be used to predict the behavior of the reduced RVE under560

plasticity up to fracture. Elastic simulations of the high-fidelity RVE have negligible computation time,561

while the complete analysis considering plasticity would take 72 hours as discussed next.562

Without assuming any prior knowledge about this problem, it can be useful to sample a large part of the563

design space with fast predictions (small number of SCA clusters). If the accuracy of these fast predictions564

is reasonable, the global trend of the response (toughness) can be quickly captured as a function of the input565

variables (a and b). Evidently, the SCA predictions should be validated by comparing to the high-fidelity566

predictions for different input variables to assess the accuracy and convergence of the method. As shown567

next, multiple reduced RVEs are considered where different number of SCA material clusters were chosen.568

The number of clusters of every reduced RVE in the particle phase (phase 2) is related to the number of569

clusters in the matrix phase (phase 1) by,570

k2 = dk1/4e (33)

where k1 is the number of matrix clusters and k2 is the number of particle clusters in the reduced RVE.571

Considering 64 matrix clusters (hence, 16 particle clusters) it takes 10 minutes to complete the offline572

stage of SCA and an average of 27 seconds to perform the online stage for each design point5. The total573

computation time of the SCA method is obtained by adding the one-time offline computation time to the574

computation time of all the online analyses conducted (including postprocessing):575

ttotal = toffline + S × (tonline + tpostprocessing) (34)

with S being the number of DoE points considered – recall equation (3).This means that the composite576

toughness can be determined using SCA with 64 matrix clusters for a thousand DoE points (S = 1000) in577

a desktop computer in less than 8 hours of computation (total).578

On average, the direct numerical simulations of each high-fidelity RVE require 72 hours6 of run time in a579

state of the art high performance computing cluster using 24 cores (Intel Haswell E5-2680v3 compute nodes580

with 2.5GHz and 2× 12-cores), and an additional 30 minutes to perform the homogenization of the stresses581

and strains using a single processor (postprocessing time). Clearly, the computational savings provided582

5Computation times determined for a desktop computer using a single processor. Note that the SCA method is implemented
in a non-optimized MATLAB code.

6Note that the current problem requires a precise determination of the local strains and global stress/strain behavior of
the composite in order to determine the fracture point. This implies a large number of analysis steps, so every simulation
conducted in this section (whether for the SCA method or the DNS validation simulations) considered a total of 200 output
steps for the uniaxial tension test of the composite up to a strain of 0.1.
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by the SCA method are a fundamental contribution to accomplish the data-driven design of the inelastic583

composite.584

The DoE for the SCA analysis with 64 matrix clusters was obtained as described in the previous section585

and considering 1000 points from a Sobol sequence of the the two input design variables with the following586

bounds:587

a = [10, 700] MPa , b = [50, 2000] MPa (35)

Figure 13 shows a contour plot of the toughness property of the composite obtained for the 1000 DoE588

points within the above bounds of the input design variables. This figure shows a clear region where toughness589

is maximized (light yellow region) along a line with a small slope: for reference, the DoE points located close590

to that region have a toughness increase of 6.5% from (a, b) ≡ (20, 310) MPa to (a, b) ≡ (221, 60) MPa.591

The DoE point with highest predicted toughness from SCA considering k1 = 64 matrix clusters occurs at592

(a, b) ≡ (221, 60) MPa with a value of 12.6mJ/mm3.593

(a) Response surface of composite toughness (k1 = 64). (b) Contour plot of composite toughness (k1 = 64).

Figure 13: Composite toughness obtained from the SCA method using 64 matrix clusters for 1000 DoE points of
the inelastic parameters a and b. The dashed box indicates the region of interest where toughness is
higher: a = [100, 350] MPa and b = [50, 400] MPa.

A qualitative analysis of the results in Figure 13 suggests that the general trend of composite toughness594

variation with parameters a and b is captured. On the one hand for sufficiently high values of yielding595

(parameter a) the actual value of a becomes irrelevant because the particles remain linear elastic, i.e.596

composite fracture occurs by matrix cracking before the particles enter the inelastic regime, leading to the597

same value of toughness (dark blue region with 8 mJ/mm3). On the other hand, even if the particles598

yield before the composite fractures (low values of a), if hardening is large enough (parameter b) then the599

composite toughness is still low. This leads to a contour plot where there are clear lines with similar levels600

of toughness – see Figure 13b).601

A premature quantitative analysis of the results shown in Figure 13 would indicate that points close to602

(a, b) ≡ (221, 60) MPa would lead to maximum composite toughness. However, this response surface was603

obtained for a coarse analysis of a reduced RVE with 80 material clusters (64 for the matrix, 16 for the604

particles), as compared to 512, 000 finite elements used in the DNS of the high-fidelity RVE.605

In order to assess the accuracy of the SCA predictions, the stress-strain response of the composite for606

three specific DoE points is presented in Figure 14. These points were selected according to Figure 13b),607

i.e. using the response surface obtained from a coarse SCA with k1 = 64 clusters. In Figure 14 there are608

three SCA predictions obtained for an increasing number of clusters, as well as the results obtained by DNS609
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of the high-fidelity RVEs. The blue stress-strain curves are obtained for DoE point (a, b) ≡ (43, 111) MPa610

predicted to lead to low toughness since this point is far from the region of interest indicated by the box in611

Figure 13. The other two points are located inside the region of interest corresponding to high toughness612

values. Table 5 summarizes the toughness predictions and compares the error of the various SCA refinements613

as compared to the DNS.614

Figure 14: Stress-strain response of the composite material for three different DoE points. The results obtained
from the SCA method for different number of clusters and from the Direct Numerical Simulation (DNS)
of the high-fidelity RVE are included for comparison. The composite toughness is represented as the
shaded area underneath the curves. Table 5 includes the toughness values obtained for the three DoE
points and respective SCA predictions.

Observing Table 5 it can be seen that the composite toughness from DNS is higher for point (a, b) ≡615

(91, 129) than for point (a, b) ≡ (221, 60), unlike what is predicted by the coarse SCA response (k1 = 64).616

As the number of material clusters increases, one can observe from the table as well as Figure 14 that the617

toughness approximation error decreases, and that using 1024 matrix clusters the SCA method correctly618

predicts which point has higher toughness.619

Table 5: Comparison of the composite toughness obtained from the DNS of the high-fidelity RVE with the predic-
tions obtained from SCA considering different number of material clusters. Value in parenthesis indicates
relative error, toughness units are mJ/mm3.

DNS SCA (k1 = 1024) SCA (k1 = 256) SCA (k1 = 64)
(a, b) ≡ (43, 111) 7.1 7.7 (+8.5%) 8.0 (+12.7%) 8.3 (+16.9%)
(a, b) ≡ (221, 60) 9.8 11.1 (+13.2%) 12.0 (+22.4%) 12.6 (+28.6%)
(a, b) ≡ (91, 129) 11.4 11.4 (0.0%) 11.3 (-0.9%) 11.6 (+1.8%)

Interestingly, Table 5 demonstrates that the SCA method converges to the solution faster for some points620

than others. Recall that these analyses are particularly challenging because fracture depends on highly621

localized deformations. The SCA method was developed to be an optimal strategy to reproduce these622

local deformations using dramaticly fewer discretization points while still capturing the global response as623

accurately as possible. Plasticity is typically a more diffuse form of deformation than fracture; therefore,624

a larger number of clusters is required for capturing damage. This is well illustrated in Figure 14 where it625

is clear that the stress-strain curvers are predicted very accurately but the onset of failure is less accurate.626

Nevertheless, the SCA method continues to converge to the solution as the number of material clusters627
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increases while still showing a computation time that is several orders of magnitude lower – see Table 6.628

Table 6: Comparison of computation times using a single core for SCA and DNS.

DNS SCA (k1 = 1024) SCA (k1 = 512) SCA (k1 = 64)
Offline stage (one time computation) 0 31h20min 6h27min 10min
Predictive stage (per DoE point) ≈ 1728h 1h36min 19min 27s
Postprocessing (per DoE point) 30min 0 0 0

Some notes to consider about the results in Table 6:629

• The computation times for SCA are obtained using a non-optimized in-house MATLAB code. The630

potential computational gains are significantly larger if using other programming language. Paral-631

lelization is also possible (the MATLAB code is currenly parallelized as well).632

• Due to the large computation time needed for DNS, the time obtained for the predictive stage of the633

DNS is estimated by multiplying the actual simulation time by the number of cores used (24). This is634

a fair estimate since the parallelization occurs within a single compute node of the high performance635

computing cluster;636

• the SCA method inherently includes the “postprocessing stage” because the system of equations (B.2-637

B.3) includes the average stress or strain of the composite as unknowns or as constraints.638

The SCA method allows for an adaptive refinement strategy of the design problem. The problem can be639

first approached by capturing the global trend of the response, as shown in Figure 13. Then, choosing key640

DoE points we can evaluate the accuracy of the method by comparing the successive refinements of SCA641

predictions to the time consuming DNS (or even with experimental results), as done in Figure 14. This642

validation enables the selection of an appropriate number of material clusters to use in SCA such that a643

smaller region of the design space can be re-sampled to find the local maxima. Figure 15 illustrates this644

refinement process.645

Figure 15a) is a contour plot obtained with k1 = 512 matrix clusters to determine the toughness for a646

DoE of 100 points in the region highlighted in Figure 13b). Note that only 67 points of the DoE used in647

Figure 13b) were within that region. Figure 15b) is a contour plot obtained with k1 = 1024 for 50 DoE648

points generated within the domain highlighted in Figure 15a). In a) there are 33 points within the boxed649

region.650

As can be observed in Figure 15 the successive refinement continues to show that there is a region along651

a line where the optimal toughness of the composite can be found. Successive refinements would lead to an652

even more accurate location of that optimal line.653

4. Conclusion654

A new data-driven computational framework applicable to the design of structures and materials is655

developed. The synergistic choices of the design of experiments (DoE), computational analysis method656

(whether direct numerical simulations or a suitable reduced order model), and machine learning algorithm657

can lead to the discovery of new structures, materials, properties and models.658

Two illustrative examples for the framework are provided. In the first example the strategy of the659

framework is explained for a problem where the computational analyses and homogenization procedure are660

sufficiently fast to avoid the use of a reduced order model. This first example addressed several points:661

1. Merits of using a non-uniform space filling design such as Sobol sequence for the DoE;662
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(a) SCA with k1 = 512. (b) SCA with k1 = 1024.

Figure 15: Composite toughness contour plot obtained from SCA with (a) 512 and (b) 1024 matrix clusters. The
dashed box indicates the region of interest where toughness is higher: a = [100, 250] MPa and b =
[50, 250] MPa.

2. Considerations on the computational challenges involved in analyzing each DoE point, such as geometry663

generation, periodic boundary conditions and computational homogenization;664

3. Influence of uncertainty at the input (imperfect descriptors) and output (imperfect predictive or ex-665

perimental tools) level. For some problems, uncertainty quantification can be a topic of significant666

importance, especially when assessing the propagation of uncertainty from inputs to outputs;667

4. Comparison of different machine learning algorithms.668

The second illustrative example addressed a significantly more challenging problem: finding the influence669

of inelastic material phase parameters on the toughness of a three-dimensional composite material. The large670

computation times involved in analyzing this problem prevent the data-driven framework of using direct671

numerical simulations. A new numerical method previously developed, self-consistent clustering analysis672

(SCA), is shown to be a viable solution to solve this challenge within a reasonable time frame.673

As a final note, there is a vast number of opportunities for improvement of the data-driven framework674

presented herein. Selection of appropriate methods and/or development of new ones can lead to tangible675

simplifications at each step of the framework:676

1. Choice of the sampling strategy to perform the DoE can decrease the number of data points required677

to find the new design or model;678

2. Different reduced order models can be of fundamental importance to form a reasonably sized database.679

3. The choice of the machine learning algorithm can also be of significant importance. In some cases an680

appropriate choice can decrease the size of the database required.681

Depending on the problem of interest, each step of the framework can assume different importance. This682

was effectively illustrated with the two examples explored herein.683
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Appendix A. Computational analysis integration in data-driven design framework686

Algorithm 1 outlines the framework, while Algorithm 2 outlines the respective function blocks. Comments687

are preceded by the . symbol, files written for each analysis are denoted in italic with an arbitrary extension688

.ext, and blocks of code where different scripts and methods can be used are indicated by <Insert block689

of code here>. These algorithms are intended to guide the implementation process and to provide the690

necessary overview to understand the particular code developed.691

Algorithms 1 and 2 were implemented in MATLABr, which is only used for the purpose of writing692

the necessary files and calling the external software that executes these files automatically. The pre- and693

post-processing is performed by running the MATLABr code which writes the python codes that are then694

executed in ABAQUSr pre- and post-processor, respectively. The finite element analyses files are also695

written from the MATLABr code to external files that are then executed in ABAQUSr Explicit/Implicit.696

Only the reduced order model was fully implemented in MATLABr including the computations, so there is697

no need to call any external software, as discussed in publication [35]. Note that the developed MATLABr
698

code calls all the external software automatically for all the points in the database, without the need for the699

analyst to intervene in the process manually.700

Appendix B. An overview of the self-consistent clustering analysis701

Recently, a new numerical method termed self-consistent clustering analysis (SCA) [35] was proposed702

by some of the authors to accelerate the predictions of linear and nonlinear reversible and irreversible703

deformation of heterogeneous material RVEs. The idea is to reduce the computational cost of RVE analyses704

without compromising their high-fidelity by conjugating two efforts:705

• decreasing the resolution of the numerical discretization (data compression);706

• counterbalancing the loss in resolution with a more robust analysis method.707

The SCA method is composed of two stages – offline and online stage – that can be summarized as708

follows. The offline stage consists of obtaining a reduced RVE where the domain is decomposed in a group709

of material clusters. Contrary to other reduced order models, SCA only requires linear elastic analyses of the710

high-fidelity RVE under three orthogonal loading conditions for two-dimensional RVEs, or six orthogonal711

loading conditions for three-dimensional ones.712

The linear elastic analyses of the high-fidelity RVE allow the discovery of a near-optimal domain decom-713

position by grouping points that have similar mechanical behavior under any applied boundary condition.714

Each group of points is called a material cluster and can be discontinuous. Material clusters are found715

by computing at every point of the high-fidelity RVE the strain concentration tensor A(x), and then us-716

ing a pattern recognition algorithm called k-means clustering [100] to group the points with similar strain717

concentration tensors.718

Since the strain concentration tensor A(x) is invariant in elasticity for any macroscopic deformation719

applied to the RVE due to the principle of superposition, an optimal domain decomposition of the RVE720

is determined, as illustrated in Figure B.16. This figure presents three different reduced RVEs obtained721

from the same two-dimensional plane strain high-fidelity composite RVE with a mesh of 600 × 600 finite722

elements, as described in [35]. These reduced RVEs illustrate the refinement that can be achieved increasing723

the number of material clusters. For clarity the figure only shows the matrix phase (phase 1).724

Once the k-means clustering domain decomposition is finished, the offline stage of SCA concludes by725

computing the interaction tensors DIJ between every material cluster. These tensors represent the influence726

of the stress in the J-th cluster on the strain in the I-th cluster. The interaction tensor DIJ is written as727

an integral of Green’s function in the high-fidelity RVE domain Ω with periodic boundary conditions,728

DIJ =
1

cI | Ω |

∫
Ω

∫
Ω

χI(x)χJ(x′)Φref(x,x′)dx′dx (B.1)
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Algorithm 1 Framework for database creation via integrated computational analyses

1: procedure CreateDatabase(DoE,QoI, UseROM,PBC, ResponseDatabase)
2: . DoE: M microstructures, R realizations, P property sets and L loadings
3: . QoI: array with quantities of interest (QoI) to homogenize
4: . UseROM : flag signaling that a Reduced Order Model (ROM) is being used
5: . PBC: flag signaling that Periodic Boundary Conditions (PBCs) are being used
6: . ResponseDatabase: output database with homogenized QoI
7: Load DoE . Load Design of Experiments structure variable
8: for n← 1, N do . Loop over N DoE points
9: . Extract geometry label m and realization label r for this DoE point n:

10: m← DoE.labels(n, 1)
11: r ← DoE.labels(n, 2)
12: geometry ← DoE.geometry(m, r) . Load geometry descriptors of this DoE point
13: Call GetMesh(geometry, PBC) . Write FEA mesh file: Mesh.ext
14: . Extract property set label p for this DoE point n:
15: p← DoE.labels(n, 3)
16: . Load descriptors of property set p:
17: props← DoE.props(p) . Load properties of this DoE point
18: if UseROM = 1 then . If using a Reduced Order Model (ROM)
19: . Run offline stage of ROM:
20: Call OfflineROM(props) . Get input file ROMinput.ext
21: end if
22: . Extract loading label l for this DoE point n:
23: l← DoE.labels(n, 4)
24: load← DoE.loads(l) . Load loading of this DoE point
25: if UseROM = 1 then . If using a Reduced Order Model
26: . Run online stage of ROM:
27: Call OnlineROM(props, load) . Get output file ROMoutput.ext
28: else . If not using a Reduced Order Model
29: . Run nonlinear FEA:
30: Call NonlinFEA(props, load) . Get output file FEAoutput.ext
31: end if
32: . Homogenize all QoI for RVE (or reduced RVE) and update database
33: Call HomogenizeResult(QoI, ResponseDatabase)
34: end for
35: return ResponseDatabase . Return database for subsequent data mining
36: end procedure
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Algorithm 2 Outline of function blocks used in Algorithm 1

1: function GetMesh(geometry, PBC)
2: . Write file PreScript.ext with pre-processing script for this geometry:
3: <Write PreScript.ext>
4: Run PreScript.ext . Get mesh file Mesh.ext by calling FEA pre-processing software
5: if PBC = 1 then . If using Periodic Boundary Conditions
6: . Update Mesh.ext file with periodic boundary condition constraints:
7: <Impose periodic boundary conditions>
8: end if
9: end function

10: function OfflineROM(props)
11: <Run FEA analyses to train the chosen Reduced Order Model>
12: <Model reduction applied to FEA analyses> . Offline or training stage
13: . This offline stage returns file ROMinput.ext with the ROM calibration database
14: end function
15: function OnlineROM(props, load)
16: . Run the ROM online stage for material property set props, boundary condition load, and using

file ROMinput.ext that includes the ROM offline calibration database obtained for the realization r of
the microstructure m:

17: <Online or predictive stage of the Reduced Order Model>
18: . This procedure returns file ROMoutput.ext containing the local QoI outputs over the RVE domain

Ω
19: end function
20: function NonlinFEA(props, load)
21: .Write file with FEA conditions and local output variables. This file includes the mesh file Mesh.ext,

uses the property set props and boundary condition load:
22: <Write NonlinFEA.ext>
23: . Conduct FEA by calling external software:
24: Run FEAinput.ext . Get output file: FEAoutput.ext
25: end function
26: function HomogenizeResult(QoI, ResponseDatabase)
27: for all q ∈ QoI do . Loop over every requested Quantity of Interest in list QoI
28: . Numerically solve q̄ = 1

Ω

∫
Ω
q dΩ over the RVE (or reduced RVE) domain Ω:

29: <Compute homogenized quantity of interest q̄>
30: ResponseDatabase← q̄ . Update response database
31: end for
32: . Return database collecting every homogenized QoI:
33: return ResponseDatabase
34: end function
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Number of clusters: 16Number of clusters: 1 Number of clusters: 256Figure B.16: Three different reduced RVEs showing the subdomain decompositions of matrix phase (phase 1)
obtained by A-based clustering. From left to right the number k1 of clusters in the matrix phase is:
k1 = 1, k1 = 16, and k1 = 256.

where cI is the volume fraction of the I-th cluster, | Ω | is the volume of domain Ω, χI(x) is a window729

function, and Φref(x,x′) is the fourth-order periodic Green’s function associated with an isotropic linear730

elastic reference material with stiffness tensor Cref. As shown in our work [35], this reference stiffness should731

be considered as the stiffness of the high-fidelity RVE to ensure the self-consistency of the method and732

improve convergence.733

After computing the interaction tensors and finishing the offline stage, SCA can be used to predict the734

behavior of the reduced RVE – online or predictive stage. This stage can be performed for any boundary735

condition of choice and, more importantly, for any set of nonlinear constitutive laws with the same elastic736

properties without redoing the offline stage. In other words, one can predict the plastic behavior of the RVE737

without conducting any of the computationally expensive plasticity analysis of the high-fidelity RVE.738

The online stage of SCA consists of solving a system of equations obtained by averaging the Lippmann-739

Schwinger equation of each material cluster:740

∆εI +

k∑
J=1

DIJ :
[
∆σJ −Cref : ∆εJ

]
−∆εref = 0. (B.2)

from which a system of k equations is formed for all the clusters I = 1, ..., k that is completed by consid-741

ering the macro-strain or macro-stress constraints (boundary conditions) applied to the reduced RVE in742

incremental form:743

k∑
I=1

cI∆εI = ∆ε̄ or
k∑
I=1

cI∆σI = ∆σ̄ (B.3)

where ∆εJ and ∆σJ denote the incremental stain and stress in the J-th cluster. Note that the stress in744

each cluster results from the local constitutive law of that cluster, i.e. if it is a cluster in the matrix phase745

the stress results from the plastic law of the matrix.746

For details on the derivation of the above system of equations and on the numerical scheme the reader747

is referred to the original publication [35].748

Appendix C. An overview of Kriging and Neural Networks749

Appendix C.1. Kriging750

Kriging [101, 102, 86, 103] is a nonlinear interpolation method that is based on a two-step process: 1)751

establishing a structure for the input design variables; and 2) interpolating the response obtained for each752

sample of the input design variables. The first step finds statistical relationships among the input design753

variables x by fitting a covariance and a degree of trend to them. The second step is the actual interpolation,754

similar to other methods.755
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Kriging is a general and statistically rigorous method for interpolating deterministic [101, 102, 86] or even756

stochastic [104] computer simulations. Non-parametric regression methods such as polynomial and spline757

interpolation do not include the first step which results in a loss of accuracy when compared to kriging758

[105, 106]. In fact, spline interpolation can be shown to be equivalent to kriging with fixed covariance and759

degree of polynomial trend [105].760

In order to simplify the notation and without loss of generality, a single quantity of interest q ← qi is761

assumed at this point. The basic idea of kriging is to approximate each scalar quantity of interest q as762

a realization of the random field Q(x) over the space of input variables Rdin . If the random field Q(x)763

is known, then it is possible to approximate the quantity of interest q (xnew) at unsampled values in the764

database, i.e. for xnew /∈ {x(1),x(2), ... ,x(S)} in equation (2).765

In most kriging applications [86, 103] it is common to restrict attention to linear predictors and to766

assume that the random field is a Gaussian process. An attractive feature of the kriging predictor is that it767

is the best linear unbiased predictor (BLUP) [105, 106] in that it minimizes the mean square error (MSE)768

of prediction among all linear predictors. The Gaussian process Q(x) is assumed to have parametric mean769

(or expected value),770

E[Q(x)] = mT (x)β (C.1)

and covariance function,771

c
(
x(s),x(r)

)
= Cov[Q(x(s)), Q(x(r))] (C.2)

where m(x) = [m1(x),m2(x), ...mu(x)]T are u known basis functions (e.g. linear, quadratic, exponential,772

etc.), and β = [β1, β2, ... , βu]T is a vector of u unknown parameters. A common choice for the covariance773

function c
(
x(s),x(r)

)
is the Gaussian covariance:774

c
(
x(s),x(r)

)
= σ2 exp

 din∑
j=1

−wj(x(r)
j − x

(s)
j )2

 (C.3)

where σ2 is the prior variance of the Gaussian process Q(x) and w = [w1, w2, ... , wdin ]T are the correlation775

(roughness) parameters which control the smoothness of the random field (a large wj is an indication of a776

rough response surface along dimension j).777

The variance σ2 as well as vectors β and w are unknown and need to be estimated, respectively σ̂2,778

β̂, and ŵ. This estimation can be done by different methods such as maximum likelihood estimation or779

cross-validation [103]. The maximum likelihood estimation is equivalent to maximizing the logarithm of the780

likelihood function,781

[β̂, σ̂2, ŵ] = argmax
β,σ2,w

{
log
(
L
[
β, σ2,w|q

])}
(C.4)

which is commonly considered to be the multivariate Gaussian likelihood function,782

[β̂, σ̂2, ŵ] = argmax
β,σ2,w

{
log

(
1

σS
√

2π|C|
exp

[
− 1

2σ2
(q−Mβ)

T
C−1 (q−Mβ)

])}
(C.5)

where q = [q
(
x(1)

)
, q
(
x(2)

)
, ... , q

(
x(S)

)
]T is the S × 1 vector with the response quantity of interest for the783

S samples of the input variables, M is an S×u matrix with sth row of mT
(
x(s)

)
, and C is an S×S matrix784

with each element (r, s) given by c
(
x(r),x(s)

)
.785

A possible approach for maximizing equation (C.5) is to represent β and σ2 as a function of w and786

then performing the maximization by setting the partial derivatives of L with respect to β and σ2 to zero,787

yielding:788

β̂ =
(
MTC−1M

)−1
MTC−1 (C.6)
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σ̂2 =
1

S

(
q−Mβ̂

)T
C−1

(
q−Mβ̂

)
(C.7)

Noting that equations (C.6) and (C.7) only depend on w (since C depends on w), replacing these789

results in equation (C.5) and performing the maximization leads to a prediction for ŵ. After obtaining ŵ,790

parameters β̂ and σ̂2 are found from equations (C.6) and (C.7), respectively. This method is known in the791

literature as profiling [107].792

Once the parameters ŵ, β̂, and σ̂2 are estimated, the predicted estimate q̂ (xnew) of the response q (xnew)793

at unsampled input points xnew is given by:794

q̂ (xnew) = mT (xnew) β̂ + cT (xnew) C−1
(
q−Mβ̂

)
(C.8)

and the associated mean square error (MSE) of the prediction is795

MSE [q̂ (xnew)] = c (xnew,xnew)− cT (xnew) C−1c (xnew) + WT
(
MTC−1M

)−1
W (C.9)

where W = mT (xnew)−MTC−1c (xnew) and c (xnew) is an S×1 vector whose sth element is c
(
x(s),xnew

)
.796

As a final note, since kriging is being used herein for interpolation, reversion to the mean [108, 109] is of no797

concern; hence, constant prior mean (i.e., m(x) = 1 and u = 1) is used henceforth.798

If multiple quantities of interest are defined instead of a single quantity of interest q
(
x(s)

)
, then the799

above equations are computed dout times in order to obtain each qi
(
x(s)

)
, see equation (3). Alternatively,800

a multiresponse Gaussian Process model may be used [110].801

The benefits of kriging are the ability to quantify the prediction uncertainty and to handle highly nonlin-802

ear behavior. However, kriging is applicable to a relatively small number of samples due to the computational803

costs associated with the inversion of the covariance matrix.804

Appendix C.2. Neural Networks805

Neural networks [111, 112, 113, 114, 115] assume that each output quantity of interest qi results from806

applying a chosen transformation function f to a quantity called neuron ni,807

qi = f(ni) (C.10)

where each neuron ni is just a linear combination of all the input variables xj ,808

ni = wijxj + bi (C.11)

and where wij are the weights to be determined, bi the bias or offset parameters that are also unknown, and809

f the transfer or activation function chosen by the analyst. Note that Einstein’s summation convention is810

adopted henceforth (wijxj =
∑
j wijxj).811

The choice of the transfer function f depends on the data mining problem to be solved, as discussed812

by Hagan et al. [115]. Among many possibilities there are three classical examples that can be invoked:813

the hard limit function, the linear transformation function, and the log-sigmoid function. The hard limit814

function is a step function7 that is suitable for classification problems: when the neuron is below a certain815

value the output is classified in one category, otherwise it is classified in another. The linear transformation816

function consists of having the output variable to be the same as the neuron qi = f(ni) = ni. The log-sigmoid817

function is defined as818

f(ni) =
1

1 + e−ni
(C.12)

7The output being 1 when the input is greater than 0, and 0 otherwise.
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and is particularly common when the neural network is used to do metamodeling or function approximation,819

as in the problems considered in this article. This transfer function is differentiable, which is useful for finding820

the weights wij and biases bi via the most common iterative schemes.821

Neural networks can have multiple layers. These multilayer networks are the result of an assembly of822

neurons into a specific network architecture. This is possible because neurons can act on the outputs of a823

previous neuron,824

nλ+1
i = wλ+1

ij qλj + bλ+1
i , for λ = 0, 1, ...,Λ− 1 (C.13)

with λ + 1 being the respective layer and Λ the total number of layers in the network. Then, each neuron825

corresponds to an output variable after applying the transfer function,826

qλ+1
i = f(nλ+1

i ) = f(wλ+1
ij qλj + bλ+1

i ) , for λ = 0, 1, ...,Λ− 1 (C.14)

where the design inputs xj intuitively correspond to the initial variables q0
j ,827

q0
j = xj (C.15)

and where the last output variables qΛ
i correspond to the design quantities of interest qi,828

qΛ
i = qi (C.16)

The special case when neurons act directly on the problem design inputs xi to get the output design829

quantities of interest qi occurs for a single layer network (Λ = 1). The remaining cases require the analyst830

to choose an architecture for the multilayer network, the simplest and most common of which being the831

feedforward architecture. As the name suggests, in this architecture the design inputs are propagated forward832

through the successive neurons until reaching the design outputs via equation (C.14).833

Besides choosing the network architecture the analyst also needs to decide on how to train the neural834

network from a given database. Training a neural network is the process of determining the weights wλ+1
ij835

and biases bλ+1
i for every neuron in each layer. Several iterative schemes have been proposed [115], being836

the most common the backpropagation algorithm proposed by Werbos [116].837

In the backpropagation scheme the training data consisting of S sets of inputs xj and outputs qi, see (3),838

are compared with the predicted outputs q̂i obtained at each iteration of the training stage. This comparison839

is called performance index and is equivalent to minimize the mean square error:840

E(wλ+1
ij , bλ+1

i ) = (qi − q̂i)(qi − q̂i) (C.17)

where the dependence of the performance index E on all the weights wλ+1
ij and biases bλ+1

i is explicitly841

written.842

Finding the weights and biases in the backpropagation algorithm is achieved by minimizing E through843

successive iterations using the steepest descent algorithm:844

wλij
∣∣
k+1

= wλij
∣∣
k
− γ

∂E

∂wλij

∣∣∣∣∣
k

(C.18)

bλi
∣∣
k+1

= bλi
∣∣
k
− γ

∂E

∂bλi

∣∣∣∣
k

(C.19)

where |k denotes iteration k, and γ is the step size of the steepest descent algorithm that is allowed to845

change in each iteration. Computing the derivatives using the chain rule leads to:846

∂E

∂wλij
=

∂E

∂nλr

∂nλr
∂wλij

=
∂E

∂nλi
qλ−1
j (C.20)
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∂E

∂bλi
=

∂E

∂nλr

∂nλr
∂bλ+1
i

=
∂E

∂nλi
(C.21)

where the partial derivatives ∂nλr
∂wλij

= δriq
λ
j and ∂nλr

∂bλi
= δri follow from equation (C.13).847

Since two consecutive neurons are closely related, the term ∂E
∂nλi

can be calculated using the chain rule848

again:849

∂E

∂nλi
=

∂E

∂nλ+1
r

∂nλ+1
r

∂nλi
(C.22)

where the last term is calculated from equations (C.13) and (C.14):850

∂nλ+1
r

∂nλi
= wλ+1

rp

∂qλp
∂nλi

= wλ+1
rp

∂f
(
nλp
)

∂nλi
=
∑
p

wλ+1
rp

∂f
(
nλp
)

∂nλp
(C.23)

since
∂f(nλp)
∂nλi

= 0 for p 6= i, and noting that the summation sign is explicitly written on the RHS of the above851

equation because the index p is repeated three times.852

Replacing equation (C.23) in (C.22),853

∂E

∂nλi
=

∂E

∂nλ+1
r

(∑
p

wλ+1
rp

∂f
(
nλp
)

∂nλp

)
(C.24)

a recurrence relation is obtained where ∂E
∂nλi

is determined from the next value, i.e. the derivatives are854

propagated backwards (hence the name backpropagation algorithm). This recurrence relation needs to be855

initiated by defining the derivative of the performance index at the last layer Λ. Since the performance856

index was defined as depending on the predicted value q̂i, the following result for the last layer is achieved:857

∂E

∂nΛ
i

=
∂ [(qj − q̂j) (qj − q̂j)]

∂nΛ
i

= −2 (qi − q̂i)
∂f
(
nΛ
i

)
∂nΛ

i

(no sum on i) (C.25)

This completes the backpropagation algorithm. In summary, in neural networks with a feedforward858

architecture and the backpropagation algorithm the information starts by traveling forward from the inputs859

xj to the outputs qi:860

q0
j = xj (C.26)

qλ+1
i = f(wλ+1

ij qλj + bλ+1
i ) , for λ = 0, 1, ...,Λ− 1 (C.27)

qΛ
i = qi (C.28)

then, the derivatives of the mean least square error are computed starting on the last layer:861

∂E

∂nΛ
i

= −2 (qi − q̂i)
∂fλ

(
nΛ
i

)
∂nΛ

i

(no sum on i) (C.29)

and moving backwards until the first layer in a recurrent relation:862

∂E

∂nλi
=

∂E

∂nλ+1
r

(∑
p

wλ+1
rp

∂fλ
(
nλp
)

∂nλp

)
, for λ = Λ− 1, ..., 2, 1 (C.30)
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from which the weights and biases can be finally estimated for the iterative step k+1 by the steepest descent863

algorithm from equations (C.18) and (C.19):864

wλij
∣∣
k+1

= wλij
∣∣
k
− γ

∂E

∂nλi

∣∣∣∣
k

qλ−1
j (C.31)

bλi
∣∣
k+1

= bλi
∣∣
k
− γ

∂E

∂nλi

∣∣∣∣
k

(C.32)

Appendix D. Summary of global sensitivity analysis865

The main sensitivity index is written as,866

Si =
Vi
V (q)

(D.1)

where V (q) is the total unconditional variance defined as a summation of the partial variances [117],867

V (q) =

din∑
i

Vi +

din∑
i

din∑
j>i

Vij + ... (D.2)

with din being the total number of input variables,
∑din
i Vi the sum of partial variances that include the868

first-order effects of each single input variable,
∑din
i

∑din
j>i Vij the sum of partial variances that include the869

interaction of two input variables, etc.870

The total sensitivity index is written as,871

STi = Si +
∑
i6=j

Sij +
∑
i 6=j 6=k

Sijk + ... (D.3)

with the number of indices i, j, k, ... being limited by the total number of input variables. The higher-order872

sensitivity indices are given by,873

Sij...din =
Vij...din
V (q)

(D.4)

Different variance estimations have been proposed by different authors, as reviewed by Saltelli et al. [99].874

A common formulation when using Sobol sequence leads to the following result [99]:875

Si =

1
Ns

∑Ns
(m,p,l)=1 q̄

(m,p,l)
B

(
q̄

(m,p,l)

Ai
B

− q̄(m,p,l)
A

)
1
Ns

∑Ns
(m,p,l)=1

(
q̄

(m,p,l)
A − ¯̄q

(m,p,l)
A

)2 (D.5)

STi =

1
2Ns

∑Ns
(m,p,l)=1

(
q̄

(m,p,l)
A − q̄(m,p,l)

Ai
B

)2

1
Ns

∑Ns
(m,p,l)=1

(
q̄

(m,p,l)
A − ¯̄q

(m,p,l)
A

)2 (D.6)

where ¯̄q
(m,p,l)
A is given by,876

¯̄q
(m,p,l)
A =

1

Ns

Ns∑
(m,p,l)=1

q̄
(m,p,l)
A (D.7)

and where q̄(m,p,l)
A is the model output q̄ obtained for DoE point (m, p, l) included in a subset A with Ns877

points of the DoE for all the input variables, q̄(m,p,l)
B is the output for another subset B of the DoE with878

Ns points, and q̄
(m,p,l)

Ai
B

is the response for the subset A but where the values of the input variable xi are879

replaced by the values of that variable in subset B.880
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