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Abstract 

A continuing challenge in computational materials design is developing a model to link the microstructure 

of a material to its material properties in both an accurate and computationally efficient manner. In this 

paper, such a model is developed which uses image-based data from characterization studies combined 

with a newly developed self-consistent volume-integral micromechanics model (SVIM) based on radial 

distribution function. It is observed that SVIM is able to capture the effective stress/strain distribution 

inside the inclusion, as well as the effects of volume fraction and nearest inclusion distance on the 

effective properties of heterogeneous material. More importantly, SVIM can be applied to inclusions with 

arbitrary shape through discretizing the inclusion domain, which is missing in traditional mean-field 

micromechanics models. For both 2-Dimensional (2D) and 3-Dimensional (3D) problems with identical 

circular and spherical inhomogeneities, SVIM’s capability of predicting effective elastic properties is 

validated against experiments and direct numerical simulations using finite element method (FEM). 

Finally, the effect of inclusion shape is predicted by SVIM. 

Keywords:  micro-mechanics, modulus and composites, finite element, materials design, statistical 

descriptors 

1. Introduction 

Computational modeling and design of materials is becoming increasingly widespread in the development 

of new advanced material system [1, 2]. As the properties of materials and the interaction between each 

microstructural phase become increasingly complex, traditional design processes relying on the 

experimental Edisonian trial-and-error approach can become intractable for finding the optimal designs. 

For a heterogeneous material, three major factors driving materials properties are phase compositions, 

geometry and their interaction. To better understand and improve materials behavior, a model is needed to 

take these statistical microstructural parameters and convert them to the desired properties of the 

macroscopic material.  

Accuracy of the prediction and computational cost of the model are the two critical aspects that should be 

considered for the materials design or optimization process. The desired model is one that accurately 

predicts the properties of the material with low computational effort, and is the goal of this paper. We 

starts from the statistical description of the microstructure based on imaging techniques such as scanning 

electron microscope (SEM), transmission electron microscopy (TEM), Local-Electrode Atom-probe 

(LEAP) tomography and/or X-ray diffraction. Two representative volume element (RVE) modeling 
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methods are then investigated in this paper: direct numerical simulation (DNS) and self-consistent 

volume-integral micromechanics (SVIM) based on statistical descriptors. These methods can be utilized 

to determine the effective properties of heterogeneous materials. In the DNS method, replications of 

RVEs are reconstructed with the same statistical descriptors as the original experimental image and 

simulated using finite element method (FEM). However, the DNS can be extremely slow when modeling 

a complex heterogeneous material on the scale of RVE, whose size in 3D should exceed at least 15 times 

of the particle diameter for high accuracy which has been proved both analytically [3] and experimentally 

[4]; this RVE size makes DNS prohibitive from a design perspective. A more efficient way to predict the 

RVE properties is to put the statistical information directly into the SVIM model proposed in this paper. 

In the present work, a new self-consistent volume-integral micromechanics model (SVIM) is developed 

for two-phase heterogeneous material with identical arbitrarily shaped inclusion both in 2D and 3D, and is 

validated against DNS and experiments. We first discuss the image-based material characterization and 

reconstruction, as well as the RVE modeling using FEM. Then we explain in detail how to incorporate the 

statistical descriptors into the volume integral equation, and how to derive the self-consistent equation. 

Finally, the self-consistent equation is solved iteratively and the results are compared with DNS of the 

RVE using FEM and experiments. 

2. Background 

Material characterization (i.e. SEM., TEM, LEAP, etc.) enables the mathematical descriptions of 

composite and heterogeneous alloys with complex morphology by creating a strong line between these 

mathematical models and the true microstructure of the material. An example of such a model is that of a 

nanoparticle filled polymer system studied by Deng et al [5] and Xu et al. [6, 7], where 3D 

microstructures were reconstructed based on the statistical descriptors (to reduce the need for time-

consuming imaging techniques) and  finite element analysis (FEA) was performed to determine the 

properties of these virtual materials. This FEA however, becomes increasingly expensive as the size 

and/or complexity of the RVE (and thus the number of needed elements) increases.  

Alternative DNS method to FEM can be Fast Fourier Transform (FFT)-based method for periodic 

structure, which is reported faster than FEM for elastic problem [8]. Since FFT is used, uniform mesh is 

required. For a 3D problem, assume the discretizing number at each dimension is 𝑁, then the complexity 

of  FFT on the 𝑁 × 𝑁 × 𝑁 mesh is 𝑂(𝑁3 𝑙𝑜𝑔𝑁3) in theory. If we keep the resolution of the discretization, 

the computational time will increase at least cubic with the RVE size.  

In order to decrease the computational cost of DNS, Moore, et al. [9] divided a similar RVE into several 

smaller Statistical Volume Elements (SVEs) whose properties were predicted by a modified Mori-Tanaka 

[10] and Halpin-Tsai [11] (based on self-consistent model) micromechanics model, and each SVE’s 

properties serves as element material parameters in an FEA of the total RVE [9]. A significant 

improvement of computation speed is reported, but the convergence of the properties is not guaranteed for 

small SVEs because incorrect boundary conditions were used (they assume RVE type boundary 

conditions for the SVE’s) along with insufficient statistical information. Despite these shortcomings, 

Moore’s work showed a promising and fast multiscale modeling framework based on combining FEM 

with analytical micromechanics methods. To deal with complex geometries characterized by several 

statistical descriptors, a more advanced micromechanics model than those found in traditional 

micromechanics methods is needed. Such a method will be useful as a constitutive equation in multiscale 

FEM simulations, as well as faster RVE simulation method for materials design optimization. 

From variation principles, several bounds on elastic properties can be derived for isotropic two-phase 

materials. The most popular ones are the Hashin and Shrikman’s lower and upper bounds (HS-LB and 
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HS-UB respectively) which only depend on the secondary phase volume fraction [12, 13]. However, 

these bounds can only provide an interval for the exact solution. When the contrast between the properties 

of the matrix and inhomogeneities becomes high, the gap between the upper and lower bounds is too large 

to provide a useful prediction. 

Rather than giving the bounds, other micromechanics methods aim to approximate the values of elastic 

properties. The work done by Eshelby gives the exact solution of the stress field for one ellipsoidal 

inclusion in an infinite matrix [14]. For multi-inclusion problems, several methods have been proposed 

following Eshelby’s work. Two typical methods are Mori-Tanaka [10] and the self-consistent method [15] 

based on the mean-field approximation. Rather than explicitly considering the interactions between the 

inclusions, an “effective” matrix was introduced to account for the average effects from the matrix and 

surrounding inclusions [10, 15, 16]. In this case, the effects from the distributions of the inclusions, such 

as the nearest inclusion distance effect discussed in Section 6.2, cannot be captured by these methods. In 

the work proposed by Ju and Chen [17, 18], probabilistic pairwise inclusion interactions were coupled 

into an ensemble-volume average equation and it was demonstrated that the Mori-Tanaka method 

coincides with the Hashin and Shrikman’s lower bound. However, their multi-inclusion model is based on 

the solution to the problem with only two inclusions in the matrix, and the superposition of stress field is 

not guaranteed for multi-inclusion problems. Moreover, all the above micromechanics methods only work 

for simple shapes of the inclusion, since usually analytical solution of the strain or stress fields for one 

inclusion is needed.  

From a design perspective, we need such a model that directly takes statistical information into account 

and doesn’t depend on the size of RVE, like traditional micromechanics models. More importantly, the 

model can consider more than just volume fraction, but also other descriptors like inclusion shape and 

spatial distribution. In this paper, such a model is developed under the micromechanics style, and it will 

provide more accurate and general predictions on the effective properties of heterogeneous materials than 

traditional ones. 

3. Image-based modeling techniques 

The microstructure in the material should be determined before the analysis. Using high-resolution image 

techniques, such as SEM, TEM, LEAP and X-ray diffraction, the geometry of the microstructure can be 

extracted from first-hand microscopic images. The material can be characterized to distinguish between 

different microstructures using statistical descriptors, and have quantitative measures of the morphology. 

For the purpose of design, we also need to reduce the design space of the microstructure to a set of several 

statistical descriptors which can be optimized. From these descriptors the corresponding microstructure 

can be reconstructed as the solution to an inverse problem. 

The majority of methods for determining the effective mechanical properties of heterogeneous materials 

can be classified into two categories: homogenization theories [19] and sub-scale simulation of 

representative volume element (RVE) [20]. Homogenization theory makes use of a method called 

asymptotic expansion to separate the scales for media with periodic structure, and periodic boundary 

conditions are applied on this unit cell. The advantage of homogenization theory is that, through an 

analysis on the unit cell, macroscopic properties can be predicted exactly [19]. Unfortunately, 

homogenization theory loses its mathematical basis for general materials with random structures (such as 

the microstructure we will consider), because there is no replicable unit cell. In this case, the concept of 

RVE comes into play and works in a more statistical sense. 

According to the definition of RVE (as given by Hill [20]), the RVE size should be sufficiently large to 

enable the RVE to be statistically representative of the heterogeneous material, and the properties of RVE 
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should not depend on the boundary conditions. In practice, the RVE size in the simulation is always 

below Hill’s definition  [20], so the convergences of a property with respect to the RVE size needs to be 

investigated and a qualified RVE size is determined when the property values converge within a given 

tolerance. Moreover, average material property values should be taken to eliminate the fluctuation of 

properties among realizations. 

 

Fig. 1. The basic framework of material characterization and reconstruction for polymer composite [5, 21], as well as the 

micromechanics based on statistical descriptors. (r = distance between a pair of points, 𝑺𝟐 = two-point correlation, 𝑪𝟐 = 

two-point cluster correlation, RDF = radial distribution function. “target” refers to the desired correlation function while 

“actual” refers to the one of reconstructed RVE.) Figures reproduced with permission from [5]. 

A basic framework of the material characterization and reconstruction for a polymer composite is shown 

in Fig. 1 [5, 21]. In Steps 1 and 2, the original image is taken by SEM and binarized to separate the two 

phases. Step 3 uses the two-point correlation 𝑆2 (the probability of finding two points in the same phase) 

and two-point cluster correlation 𝐶2  (the probability of finding two points in the same cluster) to 

characterize the morphology of microstructures. In Step 4 (Approach 1), several realizations of the RVE 

whose correlation functions match the target are reconstructed and the properties of the RVEs are 

predicted by FEM [21]. Through the average among different RVEs, the effective properties of the 

material are returned 

Although DNS using FEM (Approach 1) can provide accurate prediction of properties for a certain RVE, 

the computational cost of the simulation increases dramatically with size and complexity of the RVE due 

to increase in the number of elements needed. For illustration purpose, we performed the 3D viscoelastic 

analysis of the polymer composite with mesh size 40x40x40, 60x60x60 and 80x80x80. As shown in Fig. 

2, the simulation with 80x80x80 mesh took 13.6 hours (consider at 50 frequencies), which is prohibitively 

long from a design perspective.  

Step 1: Imaging Step 2: Binarization Step 3: Characterization

Approach 1: Reconstruction and FEM Approach 2: Micromechanics based 

on statistical descriptors (RDF).

RDF

r

r

r

        2          2  𝟐     2

 

 

Replications of FE models

Outputs: Effective properties of the material (i.e. Young’s modulus, Poisson's ratio, etc.)

𝑪𝟐

         2       2   𝟐     2

 

 

Approach 2: Self-consistent volume-

integral micromechanics (SVIM)
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Fig. 2. Illustration of the 60x60x60 finite element mesh for the polymer composite (left) and the computational time with 

respect to the number of elements (right). A power law is fit to the data, and the simulation with 100x100x100 mesh is 

approximated to take 46 h. 

In this paper, we will investigate Approach 2 as shown in Fig. 1. RVEs with different statistics are 

generated randomly and then these “virtual materials” are put into material characterization programs to 

determine the statistical descriptors, such as volume fractions and radial distribution functions. The 

procedure is similar to one for the real material which starts from an actual imaging processing. Then the 

statistical information is coupled in to a newly developed self-consistent volume-integral micromechanics 

model (SVIM). The SVIM’s capability of predicting effective elastic properties, such as Young’s 

modulus and Poisson’s ratio, will be verified by FEA. The nearest inclusion distance and volume fraction 

effects shown in FEA will also be captured by SVIM. In the end, SVIM is performed to predict the 

effective properties of materials with different inclusion shapes. 

4. Proposed self-consistent volume-integral micromechanics with statistical descriptors  

In this section, we aim to obtain a macroscopic effective constitutive equation by solving a self-consistent 

system for multiple inclusions, rather than conducting a full direct numerical simulation at the microscale. 

A RVE is defined to include two phases of constituents: matrix phase with stiffness tensor 𝐂  and 

inclusion phase with stiffness tensor 𝐂I. According to the Hill-Mandel principle of macro-homogeneity 

[15], the RVE size should be large enough so that  

〈𝝈: 𝜺〉  〈𝝈〉 : 〈𝜺〉 , (1) 

where “:” denotes the tensor contraction, and 〈… 〉  is the volume averaging operator inside the RVE 

domain 𝑉. If Eq. (1) is satisfied, the effective constitutive relationship can be further defined as a linear 

form, 

〈𝝈〉  �̅� ∶ 〈𝜺〉 . (2) 

where �̅� is the effective stiffness tensor. Different homogenization techniques can be used to calculate the 

effective modulus. In FEM, as well as FFT-based method, RVE is explicitly defined and the effective 

properties can be computed by solving the whole system. In contrast, traditional micromechanics methods 

like self-consistent and Mori-Tanaka methods don’t work with an explicit RVE, but directly utilize the 

material properties, inclusions shapes and volume fractions of the phases to do the homogenization. Since 

the RVE averaging is based on the solution for one inclusion, traditional micromechanics is always much 

faster than the DNS simulation, but with loss of accuracy. 
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In this section, we will first discuss the Mori-Tanaka method which takes into account the effects of a 

finite RVE. However, Mori-Tanaka doesn’t consider the interactions between inclusions, and that’s why 

it always underestimates the effective modulus when the inclusion is stiffer than the matrix as shown in 

Section 6. On the other hand, Mori-Tanaka method can only deal with some regular inclusion shapes (e.g., 

circular and elliptical in 2D). In order to consider interactions and complex inclusion geometry, we 

propose a self-consistent volume-integral micromechanics method, which returns the effective Eshelby’s 

tensor for arbitrary shaped inclusion and further gives the effective stiffness tensor �̅� under Mori-Tanaka 

averaging scheme. 

4.1 Mori-Tanaka averaging scheme 

In most of the micromechanics theories, the disturbances of strain field due to the appearance of 

inhomogeneities are given with respect to the predefined far field strain in an infinite homogeneous space. 

In real situation, an RVE is always finite. If we just simply define a far field strain for the finite-sized 

RVE, both of the strain and stress boundary conditions cannot be satisfied on 𝜕𝑉 [22]. In Mori-Tanaka 

averaging scheme, the image stress and strain are introduced to consider the effect of finite RVE,  

𝜺  𝜺  𝜺𝑝𝑡  𝜺𝑖𝑚, 𝝈  𝝈  𝝈𝑝𝑡  𝝈𝑖𝑚  (3) 

Where 𝜺  and 𝜺𝑝𝑡  are the far field strain and disturbance strain due to the inhomogeneities in an infinite 

space, and 𝜺𝑖𝑚 is the so-called image strain due to the finite RVE, so as for the definitions of stress.  

Suppose that there are many inhomogeneities in the RVE, the average stain field in the matrix can be 

written as 〈𝜺〉𝑀, where 〈… 〉𝑀 is the volume averaging operator in the matrix. Now we can add another 

inhomogeneity into the RVE, then the new average strain field in the matrix is 

〈𝜺𝑛𝑒𝑤〉𝑀  〈𝜺〉𝑀  〈𝜺𝑝𝑡〉𝑀  〈𝜺𝑖𝑚〉𝑀   (4) 

According to the Tanaka-Mori lemma [23], we have the volume integral of disturbance strain in the 

matrix equal to zero,  〈𝜺𝑝𝑡〉𝑀  𝟎  In Mori-Tanaka method, it assumes that the average image strain due 

to the new inclusion can be neglected since there have already been so many inclusions in the old system, 

so that we also have 〈𝜺𝑖𝑚〉𝑀  𝟎  As a result, the average strain field in the matrix remains the same, 

〈𝜺𝑛𝑒𝑤〉𝑀  〈𝜺〉𝑀   (5) 

In the inclusion, Mori and Tanaka also set the new image strain to zero due to the same scenario, then the 

average strain filed in the new inclusion is expressed as 

〈𝜺〉Ω  〈𝜺〉𝑀  〈𝜺𝑝𝑡〉Ω  (6) 

where 〈… 〉Ω  is the volume averaging operator in the inclusion, and 〈𝜺𝑝𝑡〉Ω is the average disturbance 

strain in the inclusion with respect to the average strain in the matrix, which now is regarded as the far 

field strain for the inclusion. Once the relationship between 〈𝜺𝑝𝑡〉Ω and 〈𝜺〉𝑀 is established, the effective 

stiffness can be easily calculated. 

Mori and Tanaka use the Eshelby’s single inclusion solution to approximate the relationship. Based on 

Eshelby’s equivalent principle and the constant Eshelby’s tensors for regular inclusions (e.g., circular and 

elliptical in 2D, spherical and ellipsoidal in 3D) [14], we have 

𝐂I: (〈𝜺〉𝑀  〈𝜺𝑝𝑡〉Ω)  𝐂: (〈𝜺〉𝑀  〈𝜺𝑝𝑡〉Ω     : 〈𝜺𝑝𝑡〉Ω)  (7) 

where   is the well-known Eshelby’s tensor, which is basically a volume integral of Green’s function of 

an infinite homogeneous matrix material. Then the average strain in the inclusion can be written as a 

function of the average strain in matrix, 
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〈𝜺〉Ω    : (    )  : 〈𝜺〉𝑀   (8) 

with the concentration factor 

  (𝐂I  𝐂)  : 𝐂  (9) 

After the some derivations, the effective stiffness of the heterogeneous material can be expressed by  

�̅�  𝐂 {  𝑓[  (1  𝑓) ]  },  (10)   

where   is the 4th order identity tensor, and 𝑓 is the volume fraction of the inclusion phase. In Mori-

Tanaka averaging scheme, the average strain in the matrix is regarded as the far field strain and Eshelby’s 

solution for one single inclusion is used. However, when the new inclusion is added into the RVE, the 

surrounding inclusions will interact with it, so that the strain is no longer uniformly distributed in the 

inclusion and Eshelby’s solution doesn’t work for this case. Moreover, analytical expression of Eshelby’s 

tensor only exists for some regular geometry, so that the traditional Mori-Tanaka method cannot be 

applied to arbitrary inclusion shape. 

In this paper, we will start from the volume integral equation [24] and discretize the inclusion domain into 

several integration elements. By using standard Gaussian quadrature with special polar coordinate 

transformation, we can calculate the self-interaction matrix   and pair-interaction matrix   for the nodal 

displacements. Since now the inclusion domain is discretized, arbitrary inclusion shape can be considered. 

Then we will introduce a self-consistent scheme which directly take the space distribution and volume 

fraction of inclusions into the model and outputs the effective self-interaction matrix 〈 〉. Based on 〈 〉, 

the effective Eshelby’s tensor  ̅ can be computed. Similar to Eq. (10), the effective stiffness of the 

material is 

�̅�  𝐂 {  𝑓[  (1  𝑓) ̅]  },  (11)   

4.2 Volume integral method 

For an elastostaic problem of heterogeneous material, the governing equation in partial differential form 

is equivalent to a volume integral equation [24], 

𝑢𝑚( )  𝑢𝑚
 ( )   𝛿𝐶𝑖𝑗𝑘𝑙(𝛏)

 

𝑅

𝑔𝑖,𝑗
𝑚(𝛏,  )𝑢𝑘,𝑙(𝛏) 𝛏,  (12)   

where 𝑢𝑚( ) is  the m-th component of the displacement at point  , and 𝑢𝑚
 ( ) is the m-th component of 

the far field displacement without the appearance of the inhomogeneities. 𝛿𝐶𝑖𝑗𝑘𝑙(𝛏) is the difference of 

stiffness tensor between the inhomogeneities and matrix at point 𝛏, which is 𝛿𝐶𝑖𝑗𝑘𝑙(𝛏)  𝐶𝑖𝑗𝑘𝑙
𝐼 (𝛏)  𝐶𝑖𝑗𝑘𝑙, 

so that the integral is only nonzero in the inclusion phases.  𝑔𝑖
𝑚(𝛏,  ) is the static Green’s function of 

Navier’s equation in an infinite space, which represents the i-th component of the displacement at point 𝛏 

due to the force at point  . Green’s functions and their derivatives of 2D plane strain and 3D isotropic 

material are provided in the Appendix. The integral is over the whole domain. As we can see from Eq. 

(12), the disturbances of the displacement from different inclusions can be superimposed. 

For the simplicity of demonstration, let’s consider a system with two non-overlapping inclusions with 

arbitrary shapes, as illustrated in Fig. 3. Then the volume integral equation for the displacement equation 

in the first equation becomes, 

𝑢𝑚
 ( )  𝑢𝑚

  ( )   𝛿𝐶𝑖𝑗𝑘𝑙(𝛏)
 

Ω1

𝑔𝑖,𝑗
𝑚(𝛏,  )𝑢𝑘,𝑙

 (𝛏) 𝛏   𝛿𝐶𝑖𝑗𝑘𝑙(𝛏)
 

Ω2

𝑔𝑖,𝑗
𝑚(𝛏,  )𝑢𝑘,𝑙

2 (𝛏) 𝛏   (13)   
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Fig. 3. Illustration of volume integral method for two inclusions in 2D, and dimensions of the interaction matrices   and  . 

𝑵𝟏 and 𝑵𝟐 are the numbers of nodes in the first and second inclusion, {𝐠} is the Green’s function at nodal point. 

The first integral on the R.H.S. represents self-influence of displacements in the first inclusion, while the 

second integral represents in the influence of displacement in the second inclusion on the displacement in 

the first inclusion. Due to the symmetry of the stiffness tensor, we can further simplify the equation using 

Voigt notation, 

 𝛿𝐶𝑖𝑗𝑘𝑙(𝛏)
 

Ω1

𝑔𝑖,𝑗
𝑚(𝛏,  )𝑢𝑘,𝑙

 (𝛏) 𝛏 →  {𝐠}𝐼
𝑚(𝛏,  ){𝛿𝐂}𝐼𝐽(𝛏){𝜺

 }𝐽(𝛏) 𝛏
 

Ω1

  (14)   

The strain in each element can be approximated by the standard FEM shape functions, 

{𝜺 }  [𝜀  
 , 𝜀22

 , 𝜀 2
  𝜀2 

 ]𝑇  𝐁{𝐮 }  (15)   

where {𝐮 }  𝐔  is the Voigt notation of displacements for all the discretized nodes in the first inclusion. 

In general, {… } denotes the Voigt notation. Define the Green’s function at nodal points    𝐼
  of the first 

inclusion  

𝐆𝐼
 (𝛏)   {𝐠}(𝛏,  𝐼

 ) (16)   

Extract the nodal displacement from the integral, Eq. (13) can be rewritten in Voigt notation, 

 𝐔  𝐔 
  ( 𝐆 {𝛿𝐂}𝐁 𝛏

 

Ω1

) 𝐔  ( 𝐆 {𝛿𝐂}𝐁 𝛏
 

Ω2

)𝐔2, (17)   

which is now a system of linear equations. Define 

    𝐆 {𝛿𝐂}𝐁 𝛏
 

Ω1

,   2   𝐆 {𝛿𝐂}𝐁 𝛏
 

Ω2

 , (18)   

where    is the self-interaction matrix of the first inclusion, while  2  is the pair-interaction matrix 

indicating effect of displacement in the second inclusion on that in the first inclusion. For a 2D problem, 

if 4-node bilinear element is used for the discretization and two inclusions have 𝑁  and 𝑁2 nodes inside, 

the sizes of 𝐆𝑒
 , {𝛿𝐂}, 𝐁𝑒  in each integration element are 2𝑁 × 3, 3 × 3 and 3 × 8 respectively. After 

  

 2

  
𝑒

 2
𝑒

𝑁 nodes

𝑁2 nodes

  : 2𝑁 × 2𝑁 

 2: 2𝑁2 × 2𝑁2

 2 : 2𝑁2 × 2𝑁 

  2: 2𝑁 × 2𝑁2

𝛏

 𝐼
 

𝐠 𝛏,  𝐼
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assembling of elementary matrices, the sizes of global interaction matrix    and  2  are 2𝑁 × 2𝑁  and 

2𝑁 × 2𝑁2 respectively. 

It should be noted that evaluation of singular integral involved in the expression of the self-interaction 

matrix   , when the integration point is exactly at one of the nodal points within the first inclusion. As 

we can see from the expressions of the Green’s functions, 𝐆  has an 𝑟   singularity around the nodal 

points in 2D, and 𝑟 2 singularity in 3D. Unfortunately, standard numerical integration loses its accuracy 

when singularity appears in the integral. As recommended in [25], a special polar coordinate 

transformation based on triangle (2D) or tetrahedron (3D) polar coordinates is introduced to get rid of the 

singularity. After the transformation, we can evaluate the new integrals using standard Gaussian 

quadrature efficiently.  

Similar to Eq. (17), the system of equations of nodal displacements for 𝑁 non-overlapping inclusions can 

be written generally as, 

 𝐔𝑛  𝐔𝑛
   𝑛𝐔𝑛  ∑  𝑛𝑖𝐔

𝑖

𝑁

𝑖= ,𝑖≠𝑛

, 𝑛  1, 2, …𝑁, (19)   

where  𝐔𝑛 is the nodal displacement in the n-th inclusion, and 𝐔𝑛
  is the far field displacement for the 

original homogeneous matrix material.  𝑛 is the self-interaction matrix of the n-th inclusion, and  𝑛𝑖 is 

the pair-interaction matrix representing the portion of nodal displacement in the n-th inclusion resulting 

from the nodal displacement in the i-th inclusion. Equivalent to Eq. (19), the system of equations for N 

inclusion can be also written in matrix form, 

[

𝐔 

𝐔2 

⋮
𝐔𝑁

]   [ ]  

[
 
 
 
𝐔 

 

𝐔2
  

⋮
𝐔𝑁

 ]
 
 
 

 (20)   

with 

[ ]  [

      2

 2    2
⋯

  𝑁

 2𝑁

⋮ ⋱ ⋮
  𝑁      𝑁2 ⋯    𝑁

]  (21)   

Suppose there are in total 𝑀 discretized nodes of all the inclusions, then the dimensions of [ ] are 2𝑀 ×

2𝑀 and 3𝑀 × 3𝑀 in 2D and 3D respectively. 

4.3 Newly developed self-consistent scheme 

Although the nodal displacements in each inclusion can be obtained directly by solving Eq. (20) for any 

realization of a random material, it is time-consuming in terms of the numerical integration of the self-

interaction and pair-interaction matrices for each inclusion, and each set of results only corresponds to a 

certain realization of the microstructure. As mentioned before, the real RVE is also finite which means 

that we need to find either the appropriate far field displacement, or the Green’s function for a finite 

domain. On the other hand, we are more interested in the averaged displacement in all the inclusions and 

the effective properties, rather than the displacement at every point in the domain. Rather than 

reconstructing the RVE and performing DNS analysis, we will introduce a self-consistent scheme which 

directly takes the inclusion shape, volume fraction and radial distribution function into the model and 
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outputs the ensemble-averaged displacement in the inclusion, as well as the overall effective stiffness 

tensor. 

Let us start from Eq. (20) for system with N inclusions. The next step is to insert another inclusion into 

the original RVE without overlapping with previous inclusions. Due to the appearance of the (N+1)-th 

inclusion, the displacements in the previous N inclusions are perturbed with respect to the original field, 

the resulting system of the linearized volume integral equations for N inclusions is, 

[

𝐔  Δ𝐔 

𝐔2  Δ𝐔𝟐 

⋮
𝐔𝑁  Δ𝐔𝑁

]   [ ]  

[
 
 
 
 
𝐔 

    (𝑁+ )𝐔
𝑁+ 

𝐔2
   2(𝑁+ )𝐔

𝑁+  

⋮
𝐔𝑁

   𝑁(𝑁+ )𝐔
𝑁+ 

]
 
 
 
 

, (22)   

where Δ𝐔𝑖 is the change of nodal displacements in the i-th inclusion after inserting the (N+1)-th inclusion 

into the matrix. Subtracting Eq. (20) from Eq. (22), gives a modified set of linear algebraic equations for  

Δ𝐔𝑖, 

[

Δ𝐔 

Δ𝐔𝟐 

⋮
Δ𝐔𝑁

]   [ ]  

[
 
 
 
  (𝑁+ )

 2(𝑁+ )
 

⋮
 𝑁(𝑁+ )]

 
 
 

𝐔𝑁+   (23)   

Furthermore, with all the information from the N inclusions, the volume integral equation of the (N+1)-th 

inclusion can be written as 

𝐔𝑁+  𝐔𝑁+ 
   𝑁+ 𝐔

𝑁+  [  (𝑁+ )    (𝑁+ ) …   (𝑁+ )] [

𝐔  Δ𝐔 

𝐔2  Δ𝐔𝟐 

⋮
𝐔𝑁  Δ𝐔𝑁

], (24)   

substituting Eq. (22) into Eq. (24) gives 

𝐔𝑁+  𝐔𝑁+ 
   𝑁+ 𝐔

𝑁+  [  (𝑁+ )    (𝑁+ ) …   (𝑁+ )] [

𝐔 

𝐔2 

⋮
𝐔𝑁

]

 [  (𝑁+ )    (𝑁+ ) …   (𝑁+ )][ ]  

[
 
 
 
  (𝑁+ )

 2(𝑁+ )
 

⋮
 𝑁(𝑁+ )]

 
 
 

𝐔𝑁+ , 

(25)   

Eq. (25) works for general cases with arbitrary microstructures. Now we will make the assumption that all 

the inclusions have the same shape, discretization mesh and material properties. If the inclusions are 

unidirectional aligned, we further assume all the inclusion have the same ensemble-averaged 

displacement 〈𝐔〉, so that 〈𝐔𝑖〉  〈𝐔〉. We can define the effective self-interaction matrix 〈 〉  (which 

includes the interaction between inclusions) by 

〈𝐔〉  𝐔  〈 〉〈𝐔〉  (26)   

After taking the ensemble average of Eq. (20), we have 



11 

 

〈[ ]〉  [
(  〈 〉) 1 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ (  〈 〉) 1

]  (27)   

Since the inclusions are randomly distributed, we can assume the ensemble averaged values 〈𝐔〉 and 〈[ ]〉 
of the previous N inclusions don’t correlate to the (N+1)-th inclusion. After taking the ensemble average 

of Eq. (25), we can derive 

〈𝐔〉  𝐔    〈𝐔〉  (   2 ( 𝟐   )  2

 

 

) 〈𝐔〉  (   2(  〈 〉) 1 2  ( 𝟐   )  2

 

 

) 〈𝐔〉, (28)   

where  ( 𝟐   ) is the conditional number density of the surrounding inclusion at point  2 given the first 

inclusion locate at point   , representing the distribution of the inclusions and serving as statistical 

descriptors of the microstructure.    is the original self-interaction matrix of the inclusion. Due to the 

symmetry of pair-interaction matrix, the third term on the R.H.S. of Eq. (28) vanishes, 

   2 ( 𝟐   )  2

 

 

 0, (29)   

Then by comparing Eq. (28) to Eq. (26), we reach the self-consistent equation, 

〈 〉         2(  〈 〉) 1 2  ( 𝟐   )  2

 

 

, (30)   

The self-consistent equation can be solved iteratively as we will discuss in Section 4.4. In fact, the 

effective self-interaction matrix 〈 〉 indicates the relationship between effective strain in the inclusion and 

far field strain, with consideration of inclusion interactions. The far field displacement 𝐔  is a linear 

function of far field strain 𝜺 , 

𝐔  𝐅{𝜺 }, (31)   

where 𝐅 is a function of the nodal coordinates of the inclusion. If there are 𝑁  nodes in the inclusion, the 

size of 𝐅 is 2𝑁 × 3 and 3𝑁 × 6 in 2D and 3D. Then the average strain in the inclusion can be calculated 

using the shape functions, 

{〈𝜺〉Ω}   𝐁〈𝐔〉  

 

Ω

 ( 𝐁  

 

Ω

(  〈 〉) 1𝐅) {𝜺 }  (32)   

According to the Eshelby’s equivalent principle, the effective Eshelby’s tensor of the inclusion is, 

 ̅  ( 𝐁(  〈 〉) 1  

 

Ω

𝐅)

  

{ }  { }  (33)   

where { }  is the concentration factor under Voigt notation as defined in Section 4.1. Then we can 

calculate the effective stiffness tensor using Eq. (11). More generally, if the inclusions are randomly 

oriented, we also need to average over all the possible orientations of the surrounding inclusions. Suppose 

𝜃 represents the rotation of the inclusion, and the modified effective self-interaction matrix under the 

rotation is 

〈 𝜃〉   𝐑u(𝜃)  〈 〉𝐑u(𝜃), (34)   

where 𝐑u(𝜃) is the transformation matrix of displacements under the rotation of coordinate system, and 

we have 𝐑u
𝑇𝐑u   . Moreover, the modified effective Eshelby’s tensor can be expressed as, 
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 ̅  (〈𝐑𝜀(𝜃)  ( 𝐁(  〈 〉) 1  

 

Ω

𝐅)𝐑ε(𝜃)〉𝜃)

  

{ }  { }, (35)   

where 𝐑ε(𝜃) is the transformation matrix of strain under the rotation of coordinate system, and 〈… 〉𝜃 

denotes the average operator over inclusions’ orientation. 

4.4 Self-consistent equation 

In self-consistent equation,  ( 𝟐   ) is the conditional number density function. As mentioned in Section 

4.3, it is determined by the microstructures in the material, which strongly depends on the volume fraction 

of the inhomogeneities (or secondary phases) and the distance between the two inhomogeneities given by 

the position 𝒓    2     . In this paper, we will describe the microstructure by the radial distribution 

function (RDF) 𝑔(𝑟), and the conditional number density of the surrounding particles  ( 𝟐   ) can be 

expressed as 

 ( 𝟐   )  
𝑁

𝑉
𝑔(𝑟)  (36)   

Radial distribution functions are well studied theoretically in statistical mechanics [26]. For example, the 

Ornstein-Zernike direct correlation function together with the Percus-Yevick assumption solution for hard 

spheres leads to excellent approximation of  radial distribution function 𝑔(𝑟) even at high particle volume 

fractions [27].  

On an atomic scale, the radial distribution function can also be determined experimentally using neutron 

scattering or x-ray scattering and measuring the structure factor which directly relates to the radial 

distribution function. In our case, optical methods like SEM and TEM are used to determine RDF as well 

as to reveal the morphology of the microstructure. For instance, by marking the center point of each fiber 

in a 2D SEM image of fiber reinforced polymer composite, we can use the coordinates of the center 

points to calculate the radial distribution function for fiber composite. 

Eq. (30) is a nonlinear equation for 〈 〉 which explicitly depends on the distribution of the inclusions in 

the RVE which can be described by RDF, and an iteration scheme is used to solve the nonlinear equation. 

This iteration scheme determines a new 〈 〉 by substituting a previous value of 〈 〉 into the equation and 

step forward by a step factor 𝛼 until the norm of the difference is below a certain tolerance. 

1) Set index 𝑝  1, 〈 〉     and step factor 𝛼 

2) Calculate 〈 〉  

〈 〉         2(  〈 〉𝑝  )   2  ( 𝟐   )  2

 

 

, (37) 

3) Step forward to 〈 〉𝑝 

〈 〉𝑝  〈 〉𝑝   (1  𝛼)(〈 〉  〈 〉𝑝  ), (38) 

4) If  ‖〈 〉𝑝  〈 〉𝑝  ‖ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then 

〈 〉  〈 〉𝑝 

Endif 

5) 𝑝  𝑝  1 
6) Go to Step 2 

 

In Section 6.1, we will show how the step factor influence the convergence of the iteration scheme. After 

obtaining 〈 〉, the effective Eshelby’s tensor and effective stiffness tensor can be calculated under Mori-

Tanaka averaging scheme. 
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5. Implementation 

To demonstrate the method, we will restrict the analysis to 2D plane strain and 3D problems for a two-

phase linear elastic material, and to rectangular and cubic RVEs containing randomly dispersed identical 

non-overlapping inhomogeneities. For 2D plane strain problems, an algorithm based on two specially 

developed techniques for moving inclusions is used for generating the RVE for high values of volume 

fraction, and the nearest inclusion distance (NID) can be explicitly specified in the program [28]. For 3D 

problems, RVEs are generated using molecular dynamics simulation and LJ potential is applied to control 

the distance between particles. Then geometries of the RVEs are input into finite element analysis with 

periodic boundary conditions. Simultaneously, the geometrical information is also used for the statistical 

analysis and extracting the radial distributions functions of the microstructure. By putting RDF into SVIM, 

we can calculate the overall effective elastic properties, such as Young’s modulus and Poisson ratio. 

5.1 FEA on RVEs 

For the finite element (FE) modeling in 2D, RVEs are meshed by the plane strain 3-node triangle element 

with linear shape functions for the simplicity of mesh generation and the periodic boundary conditions are 

applied to the RVEs. As we can see from Fig. 4, the periodic boundary conditions force the shape of the 

deformed RVE to be a parallelogram and the positions of the four corners will control the overall 

macroscopic strain. The bottom-left corner is fixed to eliminate the rigid body motion. As a result, the 

right-top and right-bottom corners have independent degrees of freedom. 

 

Fig. 4. Illustrations for the finite element mesh (volume fraction 30%) in 2D and the periodic boundary conditions. The 

dashed line represents the general case of the RVE deformation, while the dash-dotted line is the boundary conditions 

applied in this paper. 

To simplify the computation of the overall elastic properties, we forced the boundary condition to 

satisfy 𝜀 2  0,  𝜎   0. In this case, the shape of the deformed RVE is still rectangular. The nodes on 

the left edge and bottom edge have no displacement in the x-direction and y-direction respectively. The 

nodes on the right edge share the same displacement in the x-direction with the top-right (RT) corner, 

while the nodes on the top edge share the same displacement in the y-direction. A movement in the y-

direction is applied to top-right (RT) corner, and it should be stated that the value of the movement is 

arbitrary since the material is linear elastic. 

𝐮𝑅 

𝐮𝑅𝑇

𝜀 2  0, 𝜎   0

Periodic boundary conditions:
𝐮𝑅𝑇  𝐮𝑅  𝐮 𝑇  𝟎

𝐮   𝟎

 

 



14 

 

In the FEA, the stress and strain at a numerical integration point in each element are used to calculate 

their average values in the RVE, as well as the overall elastic properties. Following the standard 

averaging procedure, the overall elastic properties can be expressed as 

𝑣2   
∑ 𝜀  

𝑖 𝐴𝑖
𝑁𝑒
𝑖= 

∑ 𝜀22
𝑖 𝐴𝑖

𝑁𝑒
𝑖= 

, 𝐸2  
∑ 𝜎22

𝑖 𝐴𝑖
𝑁𝑒
𝑖= 

∑ 𝜀22
𝑖 𝐴𝑖

𝑁𝑒
𝑖= 

, (39) 

where 𝑣2 and 𝐸2 are the transverse Poisson’s ratio and Young’s modulus in the y direction, 𝐴𝑖 is the area 

of the i-th element, and 𝑁𝑒 is the total number of elements in the RVE. 

 

Fig. 5. Illustrations for the finite element mesh (volume fraction 30%) in 3D and the boundary conditions. 

For FE modeling in 3D, RVEs are meshed using 4-node tetrahedral element. The geometry of an instance 

of RVE and its FE mesh are provided in Fig. 5. Similar to 2D models, the boundary conditions are 𝜀 2  

𝜀23  𝜀3  0,  𝜎   𝜎22  0. Thus, the overall elastic properties can be expressed as 

𝑣   
∑ 𝜀  

𝑖 𝑉𝑖
𝑁𝑒
𝑖= 

∑ 𝜀33
𝑖 𝑉𝑖

𝑁𝑒
𝑖= 

, 𝐸  
∑ 𝜎33

𝑖 𝑉𝑖
𝑁𝑒
𝑖= 

∑ 𝜀33
𝑖 𝑉𝑖

𝑁𝑒
𝑖= 

, (40) 

where 𝑣 and 𝐸 are the Poisson’s ratio and Young’s modulus, 𝑉𝑖 is the volume of the i-th element, and 𝑁𝑒 

is the total number of elements in the RVE. 

5.2 Analysis using SVIM 

In order to solve the self-consistent equation, we need to extract the radial distribution function from the 

randomly generated RVEs. In practice, we should define a cutoff distance 𝑟𝑐𝑢𝑡 which corresponds to a 

certain accuracy of the integration. Since the RVE is periodic, it can be replicated for the calculation of 

RDF. Take the analysis of 2D RVE as an example. For each inclusion in the RVE, the distance from it to 

all the surrounding inclusions in its integration domain are recorded and binned into a histogram and then 

the average is taken among all the inclusion. The number of inclusions Δ𝑁(𝑟) at the distance between 

𝑟 and 𝑟  Δ𝑟 to the center of the reference inclusions can be extracted from the microstructure, and its 

relationship to the RDF 𝑔(𝑟) is shown below 

Δ𝑁(𝑟)  
𝑁

𝑉
𝑔(𝑟)2𝜋𝑟Δ𝑟  𝑓

2𝜋Δ𝑟𝑔(𝑟)

𝐴𝑐
𝑟, (41) 

𝜀 2  𝜀23  𝜀3  0, 𝜎   𝜎22  0
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where 𝑓 is the volume fraction of the inclusion phase and 𝐴𝑐 is the area of the inclusion, so that the RDF 

in 2D is, 

𝑔(𝑟)  
𝐴𝑐

2𝜋Δ𝑟𝑓
(
Δ𝑁(𝑟)

𝑟
)   in 2𝐷  (42) 

Based on the statistical analysis on the microstructures, the integral in the self-consistent equation can be 

evaluated numerically in a polar coordinate system (based on a radius 𝑟 and angle 𝜃) as: 

   2(  〈 〉𝑝  )   2  ( 𝟐   )  2

 

 

     2(  〈 〉𝑝  )   2 

𝑁

𝑉
𝑔(𝑟)𝑟 𝜃d𝑟

 

𝜃

 

𝑟

 ∑ {
1

2𝜋
∑   2(  〈 〉𝑝  )   2  𝜃

2𝜋

𝜃= 
} 𝑓

2𝜋𝑔(𝑟)𝑟

𝐴𝑐
Δ𝑟

𝑟𝑐𝑢𝑡

𝑟= 
, in 2D  

(43) 

Similarly, the RDF in 3D is, 

𝑔(𝑟)  
𝑉𝑐

4𝜋Δ𝑟𝑓
(
Δ𝑁(𝑟)

𝑟2 )   in 3𝐷, (44) 

where 𝑉𝑐 is the volume of the inclusion. The integral term in 3D self-consistent equation can be rewritten 

as, 

   2(  〈 〉𝑝  )   2  ( 𝟐   )  2

 

 

 ∑ {
1

𝑁𝑠
∑   2( 𝑖)(  〈 〉𝑝  )   2 ( 𝑖)

𝑁𝑠

𝑖= 
} 𝑓

4𝜋𝑔(𝑟)𝑟2

𝑉𝑐
Δ𝑟

𝑟𝑐𝑢𝑡

𝑟= 
  in 3D, 

(45) 

where   ,  2,   ,  𝑁𝑠
 are uniformly distributed points on the sphere with radius 𝑟. The cutoff distance 𝑟𝑐𝑢𝑡 

and the interval of discretization Δ𝑟 are two parameters relating to the result of the integral, as well as the 

overall elastic properties. As 𝑟𝑐𝑢𝑡 → ∞ and Δ𝑟 → 0, the convergence of the result will be reached. In 

order to have a balance between accuracy and efficiency, we will choose 𝑟𝑐𝑢𝑡  10𝐿 and Δ𝑟  0 025𝐿 

where 𝐿 is the characteristic length of the inclusion. 

In terms of the discretization of inclusion, higher order elements are preferred since they allow a better 

approximation of curved surfaces. In 2D, 8-node quadratic, quadrilateral elements are used for the 

meshing. With increasing distance r, the number of integration points of Gaussian quadrature in each 

element ranges from 6 × 6 to 1 × 1. In 3D, 20-node Quadratic, hexahedral elements are used, and the 

number of integration points ranges from 4 × 4 × 4 to 1 × 1 × 1. 

6. Results and Discussion  

We will first check the convergence of the elastic properties with respect to the RVE size in 2D FEA, and 

determine the RVE size for the following sets of simulations. Then the convergence of elastic properties 

with respect to step factor 𝛼 in SVIM is investigated. For 2D plane strain materials with non-overlapping 

circular inclusions, we demonstrate the effects of volume fraction and nearest inclusion distance (NID) in 

FEA and SVIM. For 3D materials with non-overlapping spherical inclusions, the capability of SVIM in 

capturing the effect of volume fraction is validated against both experiments and FEA. Finally, we use 

SVIM to predict the effect of inclusion shapes on elastic properties of 2D plane strain material. 

6.1 Convergence study 

In the convergence studies on FEA and SVIM, the elastic properties of the matrix and inclusion materials 

are 𝐸𝑚  3 0 GPa, 𝑣𝑚  0 3, 𝐸𝑐  100 GPa, 𝑣  0 3. In FEA, a set of models with RVE size 5, 10, 20, 
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40 𝜇𝑚 is generated under volume fraction 50% and NID 0.04 𝜇𝑚. There are 12 replications for 5, 10 and 

20 𝜇𝑚 RVEs and one replication for 40 𝜇𝑚 RVE. 

 

Fig. 6. Effective transverse Young’s modulus and Poisson’s ratio as a function of increasing RVE size. 

As we can see from Fig. 6, both of the transverse Young’s modulus and Poisson’s ratio converge as the 

RVE becomes larger, and the deviation among replications also decreases at the same time. For following 

FEA simulations, we will use 20 𝜇𝑚 RVE in order to avoid the meshing and memory issues in FEM of 

large RVEs. A typical running time of a 20 𝜇𝑚 RVE takes approximately 15 minutes with 4 quad core 

2.0 Ghz E5335 Xeon processors. 

To check the convergence of SVIM, the iteration histories of transverse Young’s modulus and Poisson’s 

ratio are provided Fig. 7, and the influence of the step factor 𝛼 is investigated. 

   

Fig. 7. Iteration histories of SVIM with different step factor 𝜶. 

All the results converge within 7 iteration under a tolerance of 0 01%, however, the step factor 𝛼 controls 

the convergence rate. When 𝛼   0 2, it converges slower than the original scheme without step factor. 

When 𝛼  0 5, it overshoots the converged value. It turns out 0.2 is the optimal step factor that gives us a 

higher convergence rate, and we will keep 𝛼  0 2 for all the SVIM calculations in 2D and 3D. Using 



17 

 

one Intel® Core™ i7 CPU, typical running times of SVIM with around 30 elements in the inclusion are 

approximately 1 minutes in 2D and 15 minutes in 3D. It should be noted that the running time can be 

reduced through parallel computing, and SVIM can be easily parallelized by distributing the integration in 

Eq. (37). 

6.2 2D plane strain problems with circular inclusions 

In this section, the elastic properties of the matrix and inclusion materials are 𝐸𝑚  3 0 GPa, 𝑣𝑚  

0 3, 𝐸𝑐  100 GPa, 𝑣  0 3 . The radius of the circular inclusions is equal to 0.2 𝜇𝑚 , so that the 

characteristic length of the inclusion is 𝐿  2𝑎  0 4 𝜇𝑚. As recommended in Section 5.2, the cut-off 

distance 𝑟𝑐𝑢𝑡 is equal to 4 𝜇𝑚 and the interval of discretization is equal to 0 01 𝜇𝑚. For all the models, 

the RVE size is chosen to be 20 𝜇𝑚, and the nearest inclusion distance varies from 0.01 to 0.19 𝜇𝑚 which 

the volume fraction of the inclusions varies from 10% to 55%. In the finite element model, the average 

element size is 0.003 𝜇𝑚.  

Following the procedure in Section 5.2, RDF was calculated and averaged among all the replications of 

each set of RVEs, and it was put into the self-consistent equation to compute the effective properties, such 

as the effective self-interaction matrix 〈 〉. For a 2D plane strain material containing circular inclusions 

with volume fraction 30% and NID 0.04 𝜇𝑚, the effective distribution of strain 𝜀22 in the inclusion under 

a far field strain {𝜺 }  [ 0 02, 0 05, 0]𝑇  is shown in Fig. 8. The analytical solution to one single 

inclusion (Eshelby’s solution ) is 𝜀22
𝐸  2 22𝑒 3, so that the effective strain in the inclusion increases due 

to the interaction between inclusions. On the other hand, the effective strain is more concentrated in the 

center of the inclusion. 

 

Fig. 8. The distribution of effective strain under {𝜺𝟎}  [ 𝟎 𝟎𝟐, 𝟎 𝟎𝟓, 𝟎]𝑻 (volume fraction 30%, NID 0.04 𝝁𝒎) of a 

cicular inclusion in 2D. 

6.2.1 Volume fraction effect 

A study was performed showing the dependence of elastic properties on the volume fraction. The volume 

fraction ranges from 0% to 55% and 6 replications are prepared for each set of models. It was stated in 

[17], that the Hashin-Shtrikman lower bound actually coincides to Mori-Tanaka method if all the 

inclusion are aligned and similarly shaped. As a result, the elastic properties predicted by Mori-Tanaka 

method are equal to those given by the Hashin-Shtrikman upper and lower bounds. Fig. 9 shows 

comparison among DNS, SVIM, self-consistent method, Hashin-Shtrikman upper and lower bounds for 

𝜀22
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effective transverse Young’s modulus and Poisson’s ratio. Since Hashin-Shtrikman bounds are energy 

based and Poisson’s ratio is not linearly dependent on energy, they are not provided as bounds for 

Poisson’s ratio. 

 

Fig. 9. Effective transverse Young’s modulus and Poisson’s ratio versus volume fraction given by 2D DNS (direct 

numerical simulation), SVIM (self-consistent volume-integral micromechanics), self-consistent method, HS-LB and HS-

UB (Hashin-Shtrikman lower and upper bounds). MT (Mori-Tanaka) method gives the same result as HS-LB. 

As shown in Fig. 9, Mori-Tanaka method always underestimate the transverse Young’s modulus and 

overestimate the Poisson’s ratio due to the lack of inclusion interactions. Traditional self-consistent 

method always overestimate both transverse Young’s modulus and Poisson’s ratio. The proposed SVIM 

predictions are close to those of DNS even for high volume fraction above 40%. Usually, Poisson’s ratio 

isn’t an easy value to predict in traditional micromechanics methods [29], but SVIM can give a relatively 

good estimation on Poisson’s ratio. 

6.2.2 Nearest inclusion distance (NID) effect   

Although volume fraction is outstanding factor affecting the properties, it should also be noted that the 

nearest inclusion distance does affect the overall elastic properties. This is because the nearest inclusion 

distance changes the stress and strain distributions in the inclusion, as well as in the matrix, with smaller 

nearest particle distances leading to higher maximum stress and strain values. For traditional 

micromechanics, such as Mori-Tanaka method and traditional self-consistent method, this phenomenon is 

generally neglected because the inclusions are not explicitly considered and the morphology of the 

microstructure is reduced to an effective matrix whose properties are determined by the volume fraction. 

In this section, we will investigate the influence of the nearest inclusion distance using DNS and SVIM. 

A study was performed for models at 30% volume fraction with nearest particle distance varying from 

0.01 𝜇𝑚 to 0.19 𝜇𝑚. The RVE size is chosen to be 20 𝜇𝑚 and 12 replications are generated under each 

set of control variables (volume fraction and NID). The randomly generated microstructure controlled by 

the NID 0.01, 0.08 and 0.19 𝜇𝑚 are shown in Fig. 10, It can be seen that the inclusions in the model with 

larger nearest particle distance are more uniformly distributed and the microstructure is closer to a regular 

structure, so that the spatial variation of the volume fraction is smaller. 

The radial distribution functions of the models with NID 0.01, 0.08 and 0.19 𝜇𝑚 are plotted in Fig. 11. 

The NID is equal to the minimum distance corresponding to a non-zeros 𝑔(𝑟). Since the microstructure 
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with larger nearest inclusion distance is closer to the regular structure, higher peaks are observed in the 

RDF curve which compensate the volume fraction near the center inclusion.  

 

Fig. 10. The morphologies of the microstructures with nearest distance 0.01, 0.08, 0.19 μm at volume fraction 30% and 

RVE size 20 μm. The solid dots represent the inclusions in the matrix. 

After obtaining the average radial distribution function for each set of models, we can perform the 

integration numerically using Eq. (43) and use the self-consistent iteration scheme to compute the overall 

elastic properties. A comparison between the transverse Young’s modulus and Poisson’s ratio given by 

the two methods is provided in  Fig. 12. 

 

Fig. 11. The RDFs of the microstructures with nearest particle distance 0.01, 0.08, 0.19 μm for volume fraction 30%. The 

RDFs goes to 1 as the distance increases. 

It can be observed in DNS that the effective transverse Young’s modulus diminishes with the increasing 

NID, but the effective transverse Poisson’s ratio increases with NID. By collecting RDFs from the RVEs 

(virtual material), SVIM can also predict the same trend. With NID varying from 0.01 to 0.19 𝜇𝑚, the 

changes of Young’s modulus and Poisson’s ratio in DNS are 4.3% and 2.5%, while the changes in SVIM 

are 2.8% and 1.2%.  
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Fig. 12. The nearest inclusion distance effect on the effective transverse Young’s modulus and Poisson’s ratio given by 

DNS and SVIM. 

6.3 3D problems with spherical inclusions 

As mentioned before, 3D DNS is time-consuming and can become intractable as more degrees of freedom 

are included in the model. In FEA and FFT-based method, the computational time is expected to be 

proportional to the third order of RVE size. But for SVIM method, the computational times doesn’t 

depend on the RVE size. Most of this computational time is dedicated to integration appearing in the self-

consistent equation, which can be parallelized easily. In this section, we will demonstrate SVIM’s 

capability of predicting the effective properties in 3D by comparing results with both DNS and 

experiments. 

 

Fig. 13. The distribution of effective strain under {𝜺𝟎}  [ 𝟎 𝟎𝟐, 𝟎 𝟎𝟐, 𝟎 𝟎𝟓, 𝟎, 𝟎, 𝟎]𝑻 (volume fraction 30%) of a 

spherical inclusion in 3D. 

In the simulations, the elastic properties of the matrix and inclusion materials are 𝐸𝑚  1 0 GPa, 𝑣𝑚  

0 3, 𝐸𝑐  100 GPa, 𝑣  0 3. The radius of the circular inclusions is equal to 1 𝜇𝑚, and the RVE size is 20 

𝜇𝑚. Similarly, RDF of each RVE is calculated and put into the self-consist equation to compute the 

𝜀33
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effective properties. For a 3D material containing spherical inclusions with volume fraction 30%, the 

effective distribution of strain 𝜀33 in the inclusion under a far field strain 𝜺  is shown in Fig. 13. The DNS 

and SVIM results, together with results from other micromechanics models, are provided in Fig. 14. The 

results from SVIM matches DNS results very well at all volume fractions. 

 

Fig. 14. Effective transverse Young’s modulus and Poisson’s ratio versus volume fraction given by 3D DNS, SVIM, self-

consistent method, HS-LB and HS-UB. MT method gives the same results as HS-LB. 

Two experimental studies for two-phase elastic materials with randomly distributed inhomogeneities are 

used to validate the proposed SVIM method [30, 31]. The elastic properties of the matrix and inclusion 

material in the two experiments are: 1) 𝐸𝑚  3 0 GPa, 𝑣𝑚  0 40, 𝐸𝑐  76 GPa, 𝑣  0 23 from Smith’s work 

[30]; 2) 𝐸𝑚  1 6  GPa, 𝑣𝑚  0 444, 𝐸𝑐  70 3 GPa, 𝑣  0 21 from Richard’s work [31].   

 

Fig. 15. Effective transverse Young’s modulus and Poisson’s ratio versus volume fraction from Smith’s experiment [30], 

SVIM, self-consistent method, HS-LB and HS-UB predictions. 

Since there is no data of RDF in the experimental work, we will use an RDF given by Percus and Yevick, 

who obtained an integral equation for 𝑔(𝑟) [32]. We will also use Wertheim’s work [27], which gives an 

analytical solution to Percus and Yevick equation, derived under hard sphere assumption, and expressed 

as a closed-form Laplace transform [27]. 
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Fig. 16. Effective transverse Young’s modulus and Poisson’s ratio versus volume fraction from Richard’s experiment [31], 

SVIM, self-consistent method, HS-LB and HS-UB  predictions. 

For the two sets of material properties, effective transverse Young’s modulus and Poisson’s ratio 

predicted by SVIM are provided in Fig. 15 and Fig. 16 respectively. Even at high volume fraction around 

50%, SVIM can give a good estimation on the effective material properties. 

6.4 Effect of inclusion shapes in 2D 

SVIM can consider inclusions with arbitrary shape by discretize the inclusion domain. In this section, we 

will use SVIM to predict the effective elastic properties of RVEs with different inclusions shapes. The 

elastic properties of the matrix and inclusion materials are 𝐸𝑚  1 0 GPa, 𝑣𝑚  0 3, 𝐸𝑐  100 GPa, 𝑣  

0 3. 

As shown in Fig. 17, the first three RVE contains randomly distributed and randomly oriented (a) 

spherical, (b) potato-shaped, (c) elliptic inclusions, respectively. However, RVE (d) contains randomly 

distributed, but axis-oriented elliptic inclusions. The aspect ratio of the elliptic inclusion is 4:3. After 

homogenization, the first three RVEs indicate an isotropic material, while the last one indicates an 

anisotropic material. 

 

Fig. 17. Illustrations of RVEs with different inclusion shapes.  

In SVIM simulations, the RDF comes from the analysis in Section 6.2, and there are around 30 elements 

in each type of inclusion. For the RVEs with randomly oriented inclusion, the self-consistent equation is 

modified according to Eq. (34). The effective transverse Young’s modulus and Poisson’s ratio were 

( ) ( ) ( )( )
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evaluated at volume fractions up to 50%. Since the effective material of RVE (d) is anisotropic, we 

evaluated it at the two axis-directions of the elliptic inclusion (axis-1 and axis-2).  

 

Fig. 18. Effective transverse Young’s modulus and Poisson’s ratio of material with different inclusions. 

For the three isotropic materials (a), (b) and (c), the potato-shaped inclusion gives the largest transverse 

Young’s modulus 𝐸2 and lowest transverse Poisson’s ratio 𝑣2, while the elliptic inclusion gives the lowest 

𝐸2 and largest 𝑣2. The anisotropic material (d) performs differently. Both of the largest 𝐸2 and 𝑣2 are in 

axis-2, and the lowest 𝐸2 and 𝑣2 are in axis-1. Based on the predictions given by SVIM, we concluded 

that the inclusion shape do affect the effective properties.  

7. Summary 

A procedure using statistical descriptors to predict elastic properties was shown for a virtual two-phase 

linear elastic material with identical arbitray-shaped non-overlapping inhomogeneities. The study on the 

nearest particle distance and volume fraction effects for 2D plane strain problems with identical circular 

no-overlapping inhomogeneities was performed, and it showed the capability of the SVIM method in 

predicting the overall elastic properties, such as transverse Young’s modulus and Poisson’s ratio, for 

various morphologies of the microstructure. SVIM is further extended to 3D problem with identical 

spherical non-overlapping inhomogeneities. In 3D the SVIM model agreed well with DNS data and 

captured experimental trends, along with giving more accurate results than traditional micromechanics 

models. In the end, we used SVIM to investigate the effect of inclusion shape on the effective elastic 

properties. 

While the current work focused only on elastic properties on linear elastic materials, the SVIM method 

can be extended to viscoelastic material such as polymer composite and plasticity of composite material. 

Further extensions will allow the SVIM theory to be generalized to consider different geometries of 

inhomogeneities, multi-phase materials, and anisotropic distributions of the inhomogeneities. 

Finally, the computational time of SVIM doesn’t depend on the RVE size, and SVIM can also be 

parallelized conveniently. The advantages in the computational efficiency and high predicting accuracy 

make the proposed RVE-modeling method a powerful tool for material system design. 
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Appendix: Green functions in 2D and 3D 

For an isotropic linear elastic material in 3D, the Green’s function is [33] 

𝑔𝑖
𝑗
( )  

1

16𝜋𝜇(1  𝑣)
[
 𝑖 𝑗

𝑟3
 (3  4𝑣)

𝛿𝑖𝑗

𝑟
] , in 3D, (46) 

where 𝑟  √ 𝑖 𝑖 with 𝑖  1, 2, 3; 𝜇 is the shear modulus and 𝑣 is the Poisson’s ratio. Then the derivative 

of the Green’s function is 
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1
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 𝑘

𝑟3
𝛿𝑖𝑗  

3 𝑖 𝑗 𝑘

𝑟5 ] , in 3D, (47) 

For a 2D linear material under the plane strain condition, the Green’s function is 

𝑔𝑖
𝑗( )  

1

8𝜋𝜇(1  𝑣)
[
 𝑖 𝑗

𝑟2
 (3  4𝑣)𝛿𝑖𝑗 ln 𝑟] , in 2D plane strain, (48) 

where 𝑟  √ 𝑖 𝑖, with 𝑖  1, 2. Then the derivative of the Green’s function is 
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𝑟4 ] , in 2D plane strain  (49) 
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