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Abstract

Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in
polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows
for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling
framework. To account for the material properties in these overlapping geometries, weighted-mean and
additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are
formulated. An extended micromechanics method based on these overlapping conditions for linear elastic
and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is
that the effect of both the geometric overlapping (clustered particles) and physical overlapping (interacting
interphases) on the effective properties can be distinguished. We apply the extended micromechanics method
to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness
of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.

Keywords: Micromechanics, overlapping geometries, Boolean-Poisson model, polymer composite,
viscoelasticity, interphase, inverse problem

1. Introduction1

Nanoparticle-reinforced polymer composites have attracted intense attention in the research and indus-2

trial communities during the past decades. As the size of filler particles approaches the nano-scale, composite3

materials may exhibit advantageous thermal, electrical or mechanical properties, even with addition of a4

small amount of fillers [1, 2]. Because of these extraordinary behaviors, polymer nanocomposites also show5

promise as multi-functional materials in automotive and aerospace industries [3].6

Many polymer fillers do not adhere to simple geometric shapes (i.e., spheres, diamonds, cylinders).7

Rather, fillers, such as carbon-black in tire applications, tend to have irregular geometries and to form8

networks of agglomerated filler particles [4]. Even, more pristine filler particle structures, such as nano-9

diamonds, will form larger aggregates unless explicitly processed to prevent such formation [5].10

Both experiments and molecular dynamics (MD) simulations have suggested that there exists an inter-11

phase region in the vicinity of a nanoparticle, with dramatically different thermal-mechanical, mechanical12

and structural properties than observed in bulk polymer [6, 7, 8, 9]. For example, Cheng et al. mea-13

sured the modulus of confined polymer films adjacent to a plane substrate through atomic force microscopy14

(AFM)-based indentation, and the thickness of the interphase is found to be around several tens of nanome-15

ters [9]. However, directly measuring mechanical properties (e.g., dynamic moduli) of the interphase in a16

nanoparticle-reinforced polymer composite can be challenging and/or time-consuming. In this paper, we17

are interested in using the overall mechanical properties of the polymer composite to inversely predict the18
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interphase properties. This motivates us to develop a general homogenization method in a natural and19

efficient way, that allows us to consider the shape and spacial distributions of the nanoparticles, properties20

of the interphase and, more importantly, the effects of overlapping regions.21

Considerable effort has been put into homogenizing polymer composites with interphase regions using22

direct numerical simulations (DNS). Qiao et al.[3] and Peng et al.[10] used finite element (FE) methods23

to analyze the effects of interphase overlap and particle clustering, as well as shapes and orientations of24

nano-particles on the elastic and viscoelastic properties of the nanocomposite. In their FE models for25

nanocomposites, a representative-volume-element (RVE) is defined to be large enough to statistically rep-26

resent the heterogeneous material while the overall properties are simultaneously independent of boundary27

conditions. Due to the resolution of a finite-element mesh needed to properly resolve strain and property28

gradients in the interphase, simulations on the RVE scale can become computationally expensive. Fast29

Fourier Transformation (FFT)-based methods [11] usually require less computational resources than FE30

method due to the high efficiency of existing FFT algorithms; however, the mesh in FFT-based method31

needs to be uniform and its convergence will be deteriorated if one material phase becomes much stiffer (or32

softer) than the others [12].33

On the other hand, analytical micromechanics models have much lower computational cost than FE or34

FFT-based methods. We will discuss several categories of analytical micromechanics methods. The first35

category of micromechanics methods begins from the work of Hashin and Shrikman [13, 14, 15], who gave36

the upper and lower bounds for the effective properties of heterogeneous materials based on variational37

principles. Their closed-form solutions depend on the volume fraction of the inclusion or secondary phase38

but ignore other key factors, such as the inclusion shapes and distributions. In order to improve the accu-39

racy and universality of this model, higher-order bounds have been proposed which incorporate statistical40

microstructural information, such as two-point and three-point correlation functions [16, 17]. The second41

category of micromechanics methods dates back to the work of Eshelby [18], which gave the exact solution42

of the stress field for one ellipsoidal inclusion embedded in an infinite matrix. Several mean-field approaches43

were proposed based on Eshelby’s solution, such as the Mori-Tanaka method [19] and self-consistent methods44

[20, 21, 22]. For polymer nanocomposite, these theories can be generalized for use with linear viscoelas-45

ticity by considering the Fourier transformation of the constitutive law to the frequency domain [23, 24].46

Approaches based on Eshelby’s solution are restricted to regular inclusion shapes such as ellipses in 2-47

Dimensions (2-D) and ellipsoids in 3-Dimensions (3-D). In order to deal with arbitrary inclusion shapes, Liu48

et al. developed self-consistent models which can consider arbitrary inclusion shape and strain distribution49

in the inclusion [25, 26].50

A difficulty of most of the existing analytical micromechanics models is that simple shaped inclusions51

must remain unique, and the physical pictures behinds those models become vague once inclusions’ ranges of52

influence begin to overlap and strong interactions begin to occur. Mori-Tanaka and self-consistent methods53

are sensitive to the volume fraction of the inclusion phase, but cannot distinguish between inclusions that54

are well dispersed (nonoverlaping), clustered (overlapping) or strongly interacted (overlapping). In order to55

account for the local interaction between a nanoparticle and the matrix material in polymer nanocomposites,56

interphase effects were incorporated by Diani et al. [27] who added an interphase layer around the filler57

using a four-phase model [22]. Although the volume fraction of the interphase layer can be calibrated to58

match the experimental data, its geometric information (e.g., its shape when multiple inclusions interact)59

is missing. Moreover, when inclusions interact with each other and the inclusion phase starts to dominate60

overall properties, assumptions of many micromechanics models may fail. For example, the Mori-Tanaka61

method [19] and its variants, which are specifically applied to polymer nanocomposites [23], assume that62

the representative inclusion (including the interphase region for polymer nanocomposites) is embedded in63

the matrix, which only captures the physics for a material with dilute/weakly interacting inclusions.64

In this paper, we propose a new extended micromechanics method that naturally handles general over-65

lapping inclusion geometries. The results of our new method is a model that addresses complex clusters66

of inclusions and the complex properties of interphase between several interacting inclusion, as discussed67

in Section 2. Mathematical formulations of overlapping conditions are introduced in Section 4. Section 568

shows the general scheme of the extended micromechanics, and its predictions using the Boolean-Poisson69

model are compared with DNS results. In Section 6, the extended micromechanics method for overlapping70
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geometries will be applied to predict interphase properties in a viscoelastic polymer composite based on71

experimental data. Concluding remarks are provided in Section 7.72

2. Geometric Framework and Physics of Overlapping Inclusions73

As a primer for our microstructural considerations, we first define inclusions and particles. For the74

remainder of this work, a particle is defined as a distinct phase where the chemical composition of the75

material differs from the matrix (e.g., a carbon-black filler in a polymer matrix is a particle). An inclusion76

is defined as any region where there material moduli are different from the matrix material (e.g., a carbon-77

black filler and its surrounding interphase region are together an inclusion). With this distinction, the78

term inclusion overlap describes a scenario where either particles overlap to form a cluster of particles or79

interphases overlap to form a region with unique interphase properties (see Figure 1). Thus, through the80

concept of overlapping inclusions we can treat dilute or weakly interacting systems, clustered particles, and81

interacting interphases all using one general geometric framework. Dilute systems occur when inclusions82

do not interact (such as in Eshelby’s problem); whereas, in weakly interacting systems inclusions interact83

indirectly by affecting the mean matrix properties (such as in the Mori-Tanaka model). By allowing for84

overlapping interphases, the proposed model offers a succinct and general method to capture interphase85

properties regardless of the their spatially varying nature or the complexity of the inclusion network. By86

allowing for overlapping particles, the proposed model extends classical theories for simple particle shapes87

(such as the Eshelby and Mori-Tanaka methods) to any inclusion geometry that can be expressed as a union88

of simple shape.

(a)

Particle 1

(b) (c)

Particle 2

çParticle 1

Particle 2

Particle 1

Particle 2

Interacting Interphases
(overlapping)

Clustered Particles
(overlapping)

Overlap Overlap

Dilute/Weakly Interacting 
(no inclusion overlap)

Figure 1: Three geometric inclusion configurations (a) dilute/weakly interacting inclusion, where inclusions do not overlap
(b) interacting interphases, where interphases overlap but particles remain distinct (c) clustered particles, where the union of
several simple particles forms arbitrarily complex clustered geometries.

89

This overlapping concept stems loosely from ideas of stochastic geometry which are often used to describe90

wireless networks [28] (e.g., cellular phone towers with overlapping ranges of transmission). For example,91

the Boolean-Poisson model employed in Section 5.2 is a common model in stochastic geometry.92

As previously discussed, the interphase region around a particle is composed of matrix material but can93

have dramatically different material properties. When two or more particles are near enough to each other94

that their interphase regions overlap, the interphase properties in the overlapping region often takes on new95

material properties that differ both from the matrix and the previous (non-overlapping) interphase [4].96

We will adopt two methods to account for these overlapping properties: additive and weighted-mean,97

where in the former, overlapping inclusion properties are summed and in the latter properties are computed98

via a weighted-mean (and the weighting determines the allowed amount of particle overlap). Formal defini-99

tions are given in equations (19) and (11). The utility of these overlapping methods is illustrated in Figure100

2 and Figure 3.101

Figure 2 shows the relative modulus in an overlapping region δC(x) normalized by the relative inclusion102

modulus δCc for a system with constant modulus inclusions. For the weighted-mean case, Figure 2(a) shows103

large clusters with constant modulus, as would be expected in a polymer composite with irregular agglomer-104

ated fillers [29]. However, Figure 2(b) shows peaks in modulus, due to the additive overlap condition, which105
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𝛿𝐂(𝐱)/𝛿𝐂'(𝑎) Weighted-mean overlapping (𝑏) Additive overlapping

Figure 2: 2-D examples of Boolean-Poisson model under (a) weighted-mean (with all weights set to 1) and (b) additive
overlapping conditions. The volume faction of the inclusion phase is 70%. The relative modulus after overlapping δC(x) is
normalized by the inclusion modulus δCc.
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Figure 3: The example relative Young’s modulus of two inclusions with an interphase (IP) region. The modulus of each particle
is constant and the IP modulus is spatially varying. The weighted-mean profile is computed with equal particle and interphase
weights.

does not seem physical. For this reason, the weighted mean method is preferred for clustered particles.106

However, an alternative scenario is shown in Figure 3 which illustrates the utility of the additive condition.107

As shown in the figure, when interphases with varying moduli overlap, the weighted-mean modulus does108

not capture the particle properties. Thus, the weighted-mean condition may predict a large, potentially109

unphysical drop in modulus. The additive modulus, however, captures the particle modulus well and results110

in interphase properties that vary smoothly between particles (as is suggested by the illustration in Figure111

16 of [4]). While the weighted-mean modulus behaves well for constant interphase properties, the additive112

modulus is preferred for spatially varying interphase moduli.113

3. Integral Equations and Homogenization of Multi-inclusion Systems114

Let us first consider a heterogeneous material where all the phases are assumed to be linearly isotropic115

and elastic. The matrix material is denoted as phase 0. If there is no body force, the equilibrium condition116

in a material domain Ω can be written as117

∂[Cijkl(x)εkl(x)]

∂xi
= 0 in Ω, (1)

where εkl(x) is the local strain tensor. By treating the matrix material as a homogeneous reference medium118

and introducing the concept of polarization stress [30], the original equilibrium condition can be reformulated119
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as an integral equation in terms of the strain ε,120

εij(x) = ε0
ij −

∫
Ω

Φijkl(x,x
′)δCklmn(x′)εmn(x′)dx′ in Ω, (2)

where ε0
ij is the far field strain in the homogeneous reference medium without the appearance of any het-121

erogeneous phase, and where we let δC(x) = C(x)−C0. The fourth-order Green’s function of the reference122

medium Φijkl(x,x
′) represents the strain contribution at x from a concentrated external stress at x′. Ex-123

pressions of Green’s functions for isotropic 2-D plane strain and 3-D material can be found in [21]. The124

integral equation of strain is also known as Lippmann-Schwinger equation, and it should be noted that the125

reference medium does not have to share the same properties as the matrix material. However we choose it126

as the matrix material for the ease of developing the extended micromechanics method in Section 5.127

By solving equation (2) in the material domain with prescribed boundary conditions, we can homogenize128

the local responses to get the macroscopic properties. Before proceeding to the details of homogenization,129

the material domain Ω is defined to be a RVE, so that its size greatly exceeds the wavelength of the130

local fluctuations of strain and stress fields. The overall properties of the RVE should not depend on the131

boundary conditions, and it can be treated as a homogeneous material at the macro-scale. According to the132

Hill-Mandel principle of macro-homogeneity [20], we have the following equation in the RVE domain Ω,133

〈σ : ε〉Ω = 〈σ〉Ω : 〈ε〉Ω, (3)

where “:” represents the tensor contraction, and 〈...〉Ω denotes the volume averaging operator inside Ω.134

With the energy equivalence indicated by equation (3), the RVE can be treated as a homogeneous material135

so that an effective constitutive relationship can be defined as,136

〈σ〉Ω = C̄ : 〈ε〉Ω, (4)

where C̄ is the effective stiffness tensor of the heterogeneous material.137

The average strain in the RVE can be determined by taking the volume average of strain inside Ω,138

ε̄ = 〈ε〉Ω =
1

|Ω|

∫
Ω

ε(x)dx, (5)

where |Ω| is the volume of the RVE. Furthermore, the average stress inside the RVE domain is139

σ̄ = 〈σ〉Ω =
1

|Ω|

∫
Ω

[
C0 + δC(x)

]
ε(x) = C0 : ε̄+ 〈δC(x) : ε(x)〉Ω. (6)

As we can see from equation (6), the key step in the homogenization is to calculate the average polarization140

stress 〈δC(x) : ε(x)〉Ω as a function of a certain macroscopic quantity (e.g., average strain ε̄), and then the141

effective stiffness tensor can be computed based on equation (4). Due to inclusion overlapping, 〈δC(x) :142

ε(x)〉Ω is not naturally a linear combination of the contribution from each individual inclusion, which143

blurs the physical picture behind most micromechanics methods which are based on a single representative144

inclusion. As will be shown in Section 4, this issue can be resolved by properly choosing the overlapping145

conditions, which govern the calculation of moduli in the overlapping region.146

4. Mathematical Formulations of Overlapping147

As discussed in Section 1, most existing micromechanics methods cannot account for overlapping inclu-148

sions. For example, let us consider a two-phase material with spherical inclusions embedded in the matrix.149

If the inclusions do not overlap, the matrix phase is always continuous and dominates the overall properties150

of the two-phase material. For no overlap (especially of an interphase region) to occur, the particle volume151

fraction must remain low, as particle spacing must stay relatively large to avoid interactions. However,152

when the inclusions can overlap, the inclusions can percolate through the matrix and become a competitor153
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of the matrix phase as the volume fraction increases. Most of the existing micromechanics methods (e.g.,154

Mori-Tanaka method [19, 31] and self consistent method [20, 22]) can not account for these overlapping155

effects because they have no mechanism for dealing with the material properties in the overlapping regions.156

Another challenge in modeling the overlap is that the physics in the overlapping regions will vary with157

material system. Thus, many different overlapping conditions may be necessary to account for a wide range158

of overlapping phenomena.159

In this section, we will introduce two basic overlapping conditions: 1) the weighted-mean overlapping160

condition and 2) the additive overlapping condition. Then the new strain definitions and modified integral161

equations in each inclusion, as well as expressions of the average polarization stress, will be derived under162

both conditions. A unified micromechanics method will be proposed in Section 5 to predict the effective163

properties of heterogeneous materials with overlapping effects.164

Before introducing different overlapping conditions, we start with the RVE domain containing N over-165

lapping inclusions. The domain of each inclusion is denoted as Ωr, with r = 1, 2, ..., N . Due to the existence166

of overlapping, we have167

N⋂
r=1

Ωr 6= ∅. (7)

The combined domain of all inclusion phases Ωc and domain of the matrix phase Ωm can be expressed as168

Ωc =

N⋃
r=1

Ωr, Ωm = Ω \
N⋃
r=1

Ωr. (8)

Furthermore, the volume fraction of the inclusion phase is169

fc =
|Ωc|
|Ω|

, with |Ω| = |Ωc|+ |Ωm|. (9)

Here we use the characteristic function to identify the region of each inclusion,170

χr(x) =

{
1 if x ∈ Ωr

0 otherwise
, (10)

where χr(x) is the characteristic function of the r-th inclusion at point x.171

4.1. Weighted-mean overlapping condition172

First we will introduce the weighted-mean overlapping condition. The goal is to formulate the weighted-173

mean overlapping condition such that if the material is uniform in each inclusion before overlapping, the174

material properties are also uniform after overlapping (i.e., the resulting heterogeneous material only has175

two phases). We choose the relative stiffness tensor at any point in Ωc to be176

δC(x) =

N∑
r=1

χr(x)ηr(x)δCr(x)

N∑
r=1

χr(x)ηr(x)

=

N∑
r=1

χ′r(x)δCr(x)

N∑
r=1

χ′r(x)

, (11)

where ηr(x) is the weighting function in the r-th inclusion, and χ′r(x) is the weighted characteristic function177

defined as178

χ′r(x) = χr(x)ηr(x). (12)

The weighting function is employed–primarily–to enforce impenetrability of phases. The weighting function179

can be chosen to have a high value for phases that are considered to be impenetrable (i.e., no overlap180

allowed). For instance, a point in a high weighted particle region overlapped by a low weighted interphase181

region would take on the properties on the particle region, as if the overlap had not occurred (see Section182
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6). Substituting equation (11) into the original integral equation (2) and decompose the integral into each183

individual inclusion domain gives,184

εij(x) = ε0
ij −

N∑
s=1

∫
Ωs

Φijkl(x,x
′)

χ′s(x′)δCsklmn(x′)
N∑
t=1

χ′t(x)

 εmn(x′)dx′ in Ω. (13)

Decomposing the total strain at x′ gives the strain in the s-th inclusion which can be defined as185

εs(x′) =
χ′s(x

′)
N∑
t=1

χ′t(x
′)

ε(x′). (14)

After substituting equation (14) into (13), we obtain186

εij(x) =

N∑
s=1

εsij(x) = ε0
ij −

N∑
s=1

∫
Ωs

Φijkl(x,x
′)δCsklmn(x′)εsmn(x′)dx′ in Ω. (15)

Also as imposed by the definition of the strain in each inclusion (see equation (14)), the following relationship187

must be satisfied,188

χ′t(x)εs(x) = χ′s(x)εt(x) in Ω. (16)

As a result, the integral equation in the r-th inclusion can be derived as189 (
N∑
s=1

χ′s(x)/χ′r(x)

)
εrij(x) = ε0

ij −
N∑
s=1

∫
Ωs

Φijkl(x,x
′)δCsklmn(x′)εsmn(x′)dx′ in Ωr. (17)

As discussed in Section 3, the key term in the homogenization procedure is the average polarization stress190

〈δC(x) : ε(x)〉Ω, and we can show that it can be computed as a summation of the contribution from each191

inclusion based on equation (11) and (14).192

〈δC(x) : ε(x)〉Ω =
1

|Ω|

∫
Ω

δC(x) : ε(x)dx =
1

|Ω|

N∑
s=1

∫
Ωs

δCs(x)εs(x)dx. (18)

4.2. Additive overlapping condition193

Another way of overlapping inclusions is to take the summation of relative stiffness tensors of all the194

inclusions involved in the overlapping. By using the characteristic function defined in equation (10), the195

relative stiffness tensor at any point in Ω can be written as196

δC(x) =

N∑
r=1

χr(x)δCr(x). (19)

Similarly, we can substitute equation (19) into the original integral equation (2) and decompose the integral197

into each individual inclusion domain, so that the new integral equation in Ω becomes198

εij(x) = ε0
ij −

N∑
s=1

∫
Ωs

Φijkl(x,x
′)χs(x

′)δCsklmn(x′)εmn(x′)dx′ in Ω. (20)

In equation (20), the strain in the s-th inclusion can be defined as199

εs(x′) = χs(x
′)ε(x′). (21)
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According to the definition of εs(x′), the following condition should be satisfied,200

χt(x)εs(x) = χs(x)εt(x) in Ω. (22)

Finally, the integral equation in the r-th inclusion becomes201

εrij(x) = ε0
ij −

N∑
s=1

∫
Ωs

Φijkl(x,x
′)δCsklmn(x′)εsmn(x′)dx′ in Ωr. (23)

It can be shown that equation (18) for the average polarization stress 〈δC(x) : ε(x)〉Ω is also satisfied under202

additive overlapping condition.203

In Table 1, we summarize the mathematical formulations of both weighted-mean and additive overlapping204

conditions.

Table 1: Summary of mathematical formulations for weighted-mean and additive overlapping conditions.

Weighted-mean overlapping Additive overlapping

Overall relative stiffness
tensor

δC(x) =

N∑
r=1

χ′r(x)δCr(x)

N∑
r=1

χ′r(x)

δC(x) =
N∑
r=1

χr(x)δCr(x)

Definition of strain in each
inclusion

εs(x′) =
χ′s(x

′)
N∑
t=1

χ′t(x
′)

ε(x′) εs(x′) = χs(x
′)ε(x′)

The integral equation in
each inclusion

Lr(x)εrij(x) = ε0
ij −

N∑
s=1

∫
Ωs

Φijkl(x,x
′)δCsklmn(x′)εsmn(x′)dx′

Lr(x) =
N∑
s=1

χ′s(x)/χ′r(x) Lr(x) = 1

Average polarization stress 〈δC(x) : ε(x)〉Ω =
1

|Ω|
N∑
s=1

∫
Ωs
δCs(x)εs(x)dx

205

By comparing equation (23) with (17), as well as in Table 1, we can see that the only difference is206

the coefficient Lr(x) before εrij(x) on the left hand side, due to different definitions of the strain in each207

inclusion. It should be noted, that the entire procedure of deriving the integral equation in each inclusion–208

based on the given overlapping condition–is general, and it can be applied to other overlapping conditions209

as long as the overall relative stiffness tensor is a linear combination of those in each inclusion. Although210

the overlap condition could take many forms based on the physics of a material system, we will focus on the211

weighted-mean and additive overlapping conditions in this paper.212

5. Extended Micromechanics Method for Overlapping Geometries213

5.1. General homogenizing scheme214

In this section, we aim to calculate the effective constitutive equation for a heterogeneous material215

containing multiple overlapping inclusions. Rather than using full direct numerical simulation, which is216

time-consuming (especially for complex microstructures with important features on scales much smaller than217

the RVE, such as nanocomposite), we will develop an analytical micromechanics method to homogenize the218

multi-inclusion system more efficiently, and to take into account inclusion overlap.219

The first step is to elucidate the essential assumption of the extended micromechanics methods for220

overlapping geometries. In order to probe the properties at a given point, we will insert a new test inclusion221
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randomly into the original material. Since overlapping is allowed, this test inclusion may overlap with the222

matrix material and other existing inclusions at the same time. In order to simplify the physical picture, the223

dimension of the test inclusion is assumed to be orders of magnitude smaller than the original inclusions,224

while its shape and material constituents are kept the same. Therefore, the strain and material properties225

surrounding the test inclusion can be considered constant, and the overlapping state in the test inclusion226

can be considered homogeneous. For example, if the test inclusion was relatively large, it could overlap with227

one inclusion through part of its domain and two inclusions through another part, and the physical picture228

would be more complicated. Under this assumption, the test inclusion is equivalent to a sampling point in229

the original material, and the outcomes of this random testing process form a sample space Ξ,230

Ξ = {ξ0, ξ1, ξ2, ...}, with
∑
ξi∈Ξ

p(ξi) = 1, (24)

where ξi is an overlapping state in Ξ at the sampling point (or test inclusion), and p is a probability231

function mapping Ξ to [0, 1]. For examples, p(ξ0) represents the probability that the sampling point is in232

the matrix material, and p(ξ3) in Boolean-Poisson model (see equation (37)) represents the probability that233

the sampling point overlaps with three inclusions.234

For the overlapping state ξ0, there is no overlapping of inclusions at the sampling point, so that the235

test inclusion is inserted into the matrix material as shown in Figure 5(a). For this state, the strain in236

the test inclusion εtest can be related to the average strain in the matrix ε̄m (similar to the concept in the237

Mori-Tanaka method [19, 31]),238

εtest
(ξ0) = T(ξ0) : ε̄m, (25)

where T(ξ0) depends on the shape of the inclusion, the properties of both the inclusion and matrix materials,239

and is not necessarily uniform in the inclusion. However, when the test inclusion is ellipsoidal in 3D (or240

elliptic in 2-D) with uniform material properties, T(ξ0) will be a constant relating to the Eshelby’s tensor241

Sm of the matrix material (more details are provided in Section 5.2). More interestingly, Benveniste has242

shown that equation (25) takes inclusion interactions into account although εtest
(ξ0) is only a function of ε̄m243

[31].244

For the overlapping state ξi(i 6= 0), the test inclusion is inserted into a non-matrix region with a stiffness245

tensor C(ξi) and strain ε̂(ξi). Similarly, the strain in the test inclusion can be determined by246

εtest
(ξi)

= T(ξi) : ε̂(ξi) for i 6= 0. (26)

Other than the inclusion shape and material properties, T(ξi) is also related to the overlapping condition247

and the corresponding integral equation (17) or (23).248

In order to approximate the strain ε̂(ξi) we use the strain concentration tensor A as249

ε̂(ξi) = A(ξi) : ε̄. (27)

where A(ξi) is the strain concentration tensor of the overlapping state ξi. Inserting equation (27) in equation250

(26) gives:251

εtest
(ξi)

=
(
T(ξi) : A(ξi)

)
: ε̄ for i 6= 0, (28)

For a 3-D spherical (or circular in 2-D) inclusion embedded in a homogeneous medium, the strain concentra-252

tion tensor becomes a function of Eshelby’s tensor, the properties of the inclusion, and the properties of the253

surrounding medium. Here we will assume the inclusion has a stiffness tensor C(ξi). The surrounding mate-254

rial properties are assumed to be that of the effective medium C̄, as in self-consistent methods [20, 22, 24].255

The strain concentration tensor of overlapping state ξi then becomes:256

A(ξi) =
[
I + S̄ : C̄

−1
: (C(ξi) − C̄)

]−1

for i 6= 0, (29)

where I is the forth-order identity tensor and by S̄ denotes the Eshelby’s tensor of the effective medium.257

Using equation (29) the strain in the test inclusion becomes:258

εtest
(ξi)

=

(
T(ξi) :

[
I + S̄ : C̄

−1
: (C(ξi) − C̄)

]−1
)

: ε̄ for i 6= 0, (30)
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An illustration of the simplified model for state ξi(i 6= 0) is provided in Figure 4(b).259

State 𝜉"

𝐂",		𝛆'(

State  𝜉)	(𝑖 ≠ 0)

𝐂(/0), 𝛜2(/0) = 𝐀(/0):𝛆'

𝐂'	,		𝛆'(𝑎) (𝑏)

Test inclusion

Non-matrix phase

Test inclusion

Figure 4: Illustration of the physical models for different overlapping states: (a) In state ξ0, the test inclusion is embedded
into the matrix material with stiffness tensor C0 and strain ε̄m; (b) In state ξi(i 6= 0), the test inclusion in embedded into
a non-matrix region with stiffness tensor C(ξi)

and strain ε(ξi), which is related to the overall average strain ε̄ through the
concentration factor A(ξi)

defined in equation (29).

From equation (25) and (28), the expected value of strain in the test inclusion 〈εtest〉 is defined as260

〈εtest〉 =
∑
ξi∈Ξ

p(ξi)ε
test
(ξi)

= p(ξ0)T(ξ0) : ε̄m +

 ∑
ξi∈(Ξ\ξ0)

p(ξi)T(ξi) : A(ξi)

 : ε̄ (31)

In addition, the following equation for the average strain must be satisfied,261

ε̄ = (1− fc)ε̄m + fcε̄
c, (32)

where ε̄c is the average strain in the overall inclusion phase. By assuming that all of the inclusions share262

the same expectation of strain with the test inclusion, ε̄c can be written as a function of 〈εtest〉,263

ε̄c = F(〈εtest〉), (33)

where F is a function depending on the overlapping condition (as shown in equation (46) and (54)). For a264

material with non-overlapping inclusions, we simply have ε̄c = 〈εtest〉.265

Finally, based on equation (3), (6) and (18), the effective stiffness C̄ can be calculated. As we can266

see from equation (31), the extended micromechanics method is self-consistent since A(ξi) depends on C̄;267

therefore, the effective stiffness tensor will be calculated iteratively using a fix-point method in this paper.268

A special case exists when the inclusions do not overlap with each other (or p(ξ0) = 1), and equation (31)269

becomes270

〈εtest〉 = T(ξ0) : ε̄m if p(ξ0) = 1. (34)

In this case, the extended micromechanics method reproduces the Mori-Tanaka method, and no iteration is271

required when solving the effective stiffness tensor.272

5.2. Basics of Boolean-Poisson model273

In stochastic geometry, the Boolean-Poisson model (or Boolean model) is a simple and commonly used274

method to generate overlapping geometries [32]. In this paper, all the N inclusions are identical and chosen275

to be spherical in 3-D (or circular in 2-D) with same radius Rc and volume V c. The center of each inclusion276

is randomly and independently inserted into the RVE domain Ω obeying a uniform distribution, and the277

resulting union of the overlapping inclusion is a realization of the Boolean-Poisson model. The procedure278

also refers to a stationary Poisson point process in Ω with a rate λ, which is defined as279

λ = N/|Ω|. (35)
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The number of inclusion centers K at any point in Ω is a Poisson random variable whose probability function280

is281

p(K = k) =
λk

k!
e−λ, (36)

where k! denotes the k factorial. The expected value of K is equal to the rate λ.

Influence region  𝐵"

𝐱"
𝑂%

𝑂&

𝐱": sampling point 

Figure 5: Illustration of the influence region B0 centering at the sampling point x0. The center of the first inclusion O1 is
inside B0, so that it overlaps with x0. While for the second inclusion, its center O2 is outside B0 so that it will not influence
the material properties at x0.

282

Due to the simplicity of Boolean-Poisson model, we can define ξi as the state where there are i inclusions283

overlapping at a sampling point x0,284

N∑
r=1

χr(x0) = i at state ξi. (37)

In order to calculate the probability function of ξi, we will first draw a sphere with radius Rc centering at285

x0, called the influence region B0. As we can see from Figure 5, if the center of any inclusion is inserted286

into the influence region, the inclusion will contribute to the overlapping at x0. Since the random processes287

at different points in Boolean-Poisson model are independent from each other, the total number of inclusion288

whose centers are in the influence region B0 also follows a Poisson distribution with a rate λV c. Finally, we289

obtain the probability function of the overlapping states:290

p(ξi) =
(λV c)i

i!
e−λV

c

. (38)

Another important quantity in the Boolean-Poisson model is the volume fraction of the inclusion phase291

fc, defined in equation (9). A phase density function ρ(x) ∈ [0, 1] is introduced for the analysis. The value292

of ρ(x) is equal to 0 if x is in the matrix phase, or 1 if x is in the inclusion phase. Since the phase density293

function needs be kept at 1 in the inclusion phase after overlapping (analogous to weighted-mean overlapping294

condition for the relative stiffness tensor), the phase density function in the r-the inclusion ρr(x) can be295

determined by296 (
N∑
s=1

χs(x)

)
ρr(x) = 1 in Ωr. (39)

As in the general scheme discussed in Section 5.1, a test inclusion is inserted at the sampling point x0 in297

the Boolean-Poisson model. Based on equation (37), the expected value of the phase density function 〈ρc〉298

in the test inclusion can be derived as299

〈ρc〉 =
∑
ξi∈Ξ

p(ξi)ρ
c
(ξi)

=

∞∑
i=0

1

i+ 1
p(ξi) = (λV c)−1(1− e−λV

c

) (40)

Then the volume fractions of the inclusion phase and matrix phase are300

fc =
N

|Ω|
〈ρc〉V c = 1− e−λV

c

and fm = 1− fc = e−λV
c

. (41)
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These values are consistent with the theoretical volume fractions obtained through other methods for301

Boolean-Poisson’s model [32], which indicates that our scheme of introducing a test inclusion is capable302

of capturing essential features of overlapping.303

5.3. Results for Boolean-Poisson model under different overlapping conditions304

In this section, we will use the extended micromechanics method to predict the effective stiffness tensors305

of the Boolean-Poisson model under weighted-mean and additive overlapping conditions; illustrations of306

these results in 2-D are shown in Figure 2. The predictions will be compared with DNS results computed307

by the FFT-based method introduced by Moulinec and Suquet [11]. The original stiffness tensor before308

overlapping is uniform and equal to Cc in each inclusion.309

We will consider the homogenization of the Boolean-Poisson model in the cases of spherical voids or310

spherical hard inclusions in 3-D. All the material interfaces are assumed to be perfectly bonded. The311

Young’s modulus and Poisson’s ratio of the matrix material are E0 = 1 GPa and ν0 = 0.3. The material312

properties of hard inclusions are Ec = 100 GPa and νc = 0.3. Due to convergence issues with the FFT-based313

DNS methods for infinite contrasted material properties [11, 12], the Young’s modulus of “void” is chosen314

to be a small value (0.001 GPa) rather than equal to 0 GPa. In the FFT-based computations, we ran 6315

samples on 2003 grids for each set of material parameters.316

1) Weighted-mean overlapping condition317

For the weighted-mean overlapping condition, the weighting function of each inclusion ηr(x) is chosen to318

be equal to 1, so that χ′r(x) = χr(x). In the non-matrix region (i.e., overlapping state ξi(i 6= 0)), we have319

C(ξi) = Cc and A(ξi) =
[
I + S̄ : C̄

−1
: (Cc − C̄)

]−1

for i 6= 0. (42)

Based on the inclusion-wise integral equation (17) under weighted-mean overlapping condition and Eshelby’s320

solution for spherical inclusions, the concentration factors can be determined as,321

T(ξ0) =
[
I + S0 : (C0)−1 : (Cc −C0)

]−1
(43)

and322

T(ξi) =
1

i+ 1

[
I + S(ξi) : C−1

(ξi)
: (Cc −C(ξi))

]−1

=
1

i+ 1
for i 6= 0, (44)

Where the 1/(i+1) term comes from the coefficient before εrij(x) in equation (17) (or Lr(x) in Table 1). Also323

in equation (44), C(ξi) = Cc in accordance with equation (42), resulting in the cancellation of the stiffness324

terms. By substituting equation (38) and (44) into (31), the expectation of strain in the test inclusion under325

weighted-mean overlapping condition becomes326

〈εtest〉 = e−λV
c

T(ξ0) : ε̄m + (ρc − e−λV
c

)A(ξi) : ε̄. (45)

Then based on the definition of inclusion-wise strain in equation (14), it can be shown that the average327

strain in the inclusion phase is328

ε̄c =
λV c

fc
〈εtest〉, (46)

and equation (32) for the overall average strain becomes329

ε̄ = (1− fc)ε̄m + λV c〈εtest〉, (47)

with the volume faction of inclusion phase fc provided in equation (41). Moreover, the overall average stress330

defined in equation (6) can be written as331

σ̄ = C0 : ε̄+ λV c(Cc −C0) : 〈εtest〉. (48)

12



Volume fraction
0 0.2 0.4 0.6 0.8 1

E
ffe

ct
iv

e 
Y

ou
ng

's
 m

od
ul

us

0

20

40

60

80

100
 DNS
 Proposed method
 Mori-Tanaka
(nonoverlapping)
 Self-consistent

Volume fraction
0 0.2 0.4 0.6 0.8 1

E
ffe

ct
iv

e 
Y

ou
ng

's
 m

od
ul

us

0

0.2

0.4

0.6

0.8

1
 DNS
 Proposed method
 Mori-Tanaka
(nonoverlapping)
 Self-consistent

Figure 6: Effective Young’s modulus of Boolean-Poisson model under additive overlapping condition with hard inclusions (left)
and “voids”(right) vs. volume fraction of the inclusion phase. Each DNS data point has 6 samples on a 2003 grid.

Combining equation (45), (47) and (48), σ̄ can be eventually expressed as σ̄ = C̄ : ε̄. The effective stiffness332

tensor C̄ of the Boolean-Poisson model under weighted-mean overlapping condition is given by333

C̄ = C0 + λV c(Cc −C0) :
T(ξ0) + (ρc − e−λV c

)A(ξi)

I + λV cT(ξ0)
(49)

with T(ξ0) and A(ξi) defined in equation (43) and (42)334

Results of Boolean-Poisson model for hard inclusions and “voids” (soft inclusions) under weighted-mean335

overlapping condition are shown in Figure 6. In both situations, the effective Young’s modulus vs. inclusion336

volume fraction curves predicted by the proposed method are bound by the Mori-Tanaka method and Hill’s337

self-consistent method. Comparing to the DNS results, the proposed method underestimates the effective338

Young’s modulus for hard inclusions, and overestimate it for voids. In particular, the predicted modulus339

becomes negligible for a critical void volume fraction of fc ≈ 0.85 which agrees with the DNS result very340

well, while the self-consistent method estimates this critical volume fraction to be fc = 0.50.341

More importantly, the proposed method can account for the overlapping effects while the Mori-Tanaka342

and self-consistent methods only account for volume fraction of the inclusions phase. For example the343

proposed model can account for the distribution of inclusions through the Boolean-Poisson model or a344

non-overlapping model; whereas, the Mori-Tanaka and self-consistent method cannot account for inclusion345

distributions.346

2) Additive overlapping condition347

For the additive overlapping condition, the material in the inclusion phase is heterogeneous and the overall348

stiffness tensor is proportional to the number of inclusions involved in the overlapping. For overlapping state349

ξi(i 6= 0), the overlapping stiffness tensor and the corresponding strain concentration tensor are350

C(ξi) = i(Cc −C0) + C0 and A(ξi) = {I + S̄ : C̄
−1

:
[
i(Cc −C0) + C0 − C̄

]
}−1 for i 6= 0. (50)

As we can see from equation (50), C(ξi) and A(ξi) now varies with the overlapping state ξi. Based on351

the inclusion-wise integral equation (23) under additive overlapping condition and Eshelby’s solution for352

spherical inclusions, the concentration factors for different overlapping states can be determined as353

T(ξ0) =
[
I + S0 : (C0)−1 : (Cc −C0)

]−1
(51)
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and354

T(ξi) =
[
I + S(ξi) : C−1

(ξi)
: (Cc −C0)

]−1

for i 6= 0, (52)

where, T(ξi) depends on the overlapping state. Substituting equation (38) into (31) gives the expectation
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Figure 7: Effective Young’s modulus of Boolean-Poisson model under additive overlapping condition as a function of the volume
fraction of the inclusion phase. Each DNS data point has 6 samples on a 2003 grid.

355

of strain in the test inclusion under additive overlapping condition356

〈εtest〉 = e−λV
c

{
T(ξ0) : ε̄m +

[ ∞∑
i=1

(λV c)i

i!
T(ξi) : A(ξi)

]
: ε̄

}
. (53)

Similarly, the average strain in the inclusion phase ε̄c can be related to 〈εtest〉 through equation (21),357

ε̄c = 〈εtest〉 (54)

Then the overall average strain can be expressed as358

ε̄ = (1− fc)ε̄m + fcε
c, (55)

However, the expression of the average stress stays the same as equation (48),359

σ̄ = C0 : ε̄+ λV c(Cc −C0) : εc. (56)

With equation (53), (55) and (56), the effective stiffness tensor C̄ of Boolean-Poisson model under additive360

overlapping condition can be calculated as361

C̄ = C0 + λV c(Cc −C0) :
T(ξ0) + e−λV

c ∑∞
i=1

(λV c)i

i!
T(ξi) : A(ξi)

I + fcT(ξ0)
, (57)

where T(ξ0) and A(ξi) are defined in equation (51) and (50). In equation (57), the summation on the right362

hand side should be truncated for numerical calculation since no simplified analytical form exists. In the363

following 3-D example, λV c will go up to 5 (fc = 0.993), so we will keep 25 terms in the summation to364

guarantee that the coefficients (λV c)i/i! of the abandoned terms are less than 1× 10−8.365
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Results of Boolean-Poisson model for hard inclusions under the additive overlapping condition are shown366

in Figure 7. The proposed method captures the DNS trend well, especially at high volume fractions. Both367

the Mori-Tanaka and the self-consistent method cannot consider the additive overlapping effect, so they do368

not perform well at high volume fraction of the inclusion phase. However, if we switch from the original369

Boolean-Poisson model to a non-overlapping model, our proposed method will degrade to the Mori-Tanaka370

method.371

5.4. Extension to other models372

We have derived the analytical form of the extended micromechanics method for the Boolean-Poisson373

model under weighted-mean and additive overlapping conditions. The method can be applied to more374

complex conditions which may account for material composition and shape of each inclusion, as well as the375

spatial distribution of the inclusions. Examples of these general conditions are listed as follow:376

(i) The material properties do not have to be uniform within each inclusion. In Section 6 for polymer377

nanocomposites, the inclusion consists of a nano-particle surrounded by a polymer shell (interphase). Since378

each inclusion has two material phases in this case, the overlapping states in the sample space Ξ will be379

more diverse. On the other hand, Eshelby’s solution may not be applicable to multiphase inclusion and380

the strain becomes nonuniform in the inclusion. Other than introducing appropriate assumptions to recover381

the Eshelby’s solution as in Section 6.1, another possible solution is to discretize the inclusion based on the382

volume-integral method. More details can be found in [25].383

(ii) We can also put more restrictions on how inclusions are inserted into the matrix material. An extreme384

case is when overlapping inclusions are not allowed, and the extended micromechanics will reproduce the385

Mori-Tanaka method as mentioned in Section 5.1. Another good example is the penetrable-concentric-shell or386

“cherry-pit” model [17, 33], where the inclusions are only partially inter-penetrable. In cherry-pit model, the387

spacial distribution of each inclusion is no longer independent of each other due to the impenetrable condition,388

which makes it hard to derive a close-form expression of the probability function of each overlapping state389

p(ξi). However, numerical experiments based on Monte-Carlo simulations could be employed to determined390

the probability functions in these complex models.391

(iii) The inclusions can have a irregular shape, other than ellipse in 2-D and ellipsoid in 3-D. Due to a392

lack of analytical solutions for strain, the inclusion would need to discretized and a volume-integral would393

need to be employed to solve for the stain accurately. Hopefully, our proposed method reduces the need394

for discretizing complex inclusions because, complex geometries can be generated by overlapping inclusions395

with regular shapes.396

6. Application to Polymer Nanocomposites397

This section will discuss the interphase modeling of polymer nanocomposites. For this system, the398

inclusion is comprised of a spherical core particle (e.g., carbon or silicon nanoparticles) surrounded by399

an interphase region. As a result of the interaction between the polymer matrix and nanoparticles, the400

material properties in the interphase are different from those of the bulk polymer matrix material. The401

material properties are assumed uniform in the nanoparticle and interphase before any overlapping occurs.402

The stiffness tensor of the nanoparticle phase is Cnp, while the stiffness tensor of the interphase is Cip. The403

weighted-mean overlapping condition is chosen for the model. The weighting functions of the nanoparticle404

and interphase are denoted as ηnp and ηip respectively. Even if an interphase region overlaps with a particle,405

the particle properties should not be affected. To enforce this condition, ηnp is chosen to be much larger406

than ηip,407

ηnp � ηip. (58)

The spacial distribution of the inclusions is chosen to follow the Poisson point process in Boolean-Poisson408

model. For these distributions, the aforementioned single phase model is first extended to two phases in409

Section 6.1 and then is applied to viscoelastic polymer composites in Section 6.410
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For linear viscoelastic materials, we use the complex modulus E∗ to represent the steady-state dynamic411

nature of the material,412

E∗(iω) = E′(ω) + iE′′(ω) = |E∗(iω)|eiδ(ω), (59)

where i is the imaginary unit that satisfy i2 = −1, and ω is the angular velocity. The storage modulus is413

given by E′ and the loss modulus by E′′. E′ and E′′ are also called the dynamic moduli of the material.414

The phase lag between a steady oscillating stress and strain is δ(ω). These values are related by415

tan δ(ω) =
E′′(ω)

E′(ω)
. (60)

6.1. Boolean-Poisson model with two-phase inclusions416

The volumes of the nanoparticle and interphase are denoted as V np and V ip respectively, with V np+V ip =417

V c. As shown in Figure 8, the influence region with a center at the sampling point x0 can now be divided418

into a sphere with volume V np (region B0) and a thick shell with volume V ip (region B1). If the center of

𝐱"

Influence region  𝐵"

Influence region  𝐵$

𝑂&𝑂$
𝑂'

𝐱": sampling point 

Figure 8: Illustration of the influence region B0 centering at the sampling point x0. The center of the first inclusion O1 is
inside B0, so that its nanoparticle phase overlaps with x0. While for the second inclusion, its center O2 is inside B1 so that its
interphase overlaps with x0. For the third inclusion, its center O3 is outside both B0 and B1 so that it will not influence the
material properties at x0.

419

a inclusion is inside B0, its nanoparticle phase will overlap with the sampling point. Because the weighting420

function of nanoparticle phase is much larger than that of the interphase, the corresponding stiffness tensor421

C(ξi) = Cnp at the sampling point. If the center of the inclusion is inside B1, its interphase will overlap with422

the sampling point. However, C(ξi) = Cip only occurs when centers of all the other inclusions are outside423

B0, and this state has a conditional probability equal to e−λV
np

. Finally, if an inclusion center is neither424

in B0 nor in B1, the inclusion will not overlap with the sampling point and the properties at the sampling425

point will remain unaltered as the matrix material. By taking all the possible situations into account, we426

can divide the sampling space Ξ into three subsets based on the material properties at the sampling point427

as shown in Figure 9. Set Ξip includes the states when C(ξi) = Cip, and Set Ξnp includes the states when428

C(ξi) = Cnp.429

After calculating the probability function of each state using equation (36), the volume fractions of the430

nanoparticle phase fnp and interphase fip can be derived as431

fnp = 1− e−λV
np

, fip = e−λV
np
[
1− e−λV

ip
]

(61)

For mechanical properties, Eshelby’s solution of spherical inclusion [18] and Tanaka-Mori’s theorem [21]432

can be directly applied to model in Figure 9(b) and 9(c). However, due to the interphase effects, for the433

model in Figure 9(a), there exists no closed-form solution for inclusion strain, and strains in the nanoparticle434

phase and interphase become non-uniform. In this paper, we adopt the assumption in [34] that the strains are435

uniform in the nanoparticle and interphase, so that Eshelby’s solution is applicable. While this assumption436

looses some accuracy in representing the spatial variation of strain in inclusions, we believe that these437
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Figure 9: Illustration of the physical models of the two-phase inclusion under different overlapping states: (a) In state ξ0,
the test inclusion is embedded into the matrix material with stiffness tensor C0 and strain ε̄m; (b) In state ξi ∈ Ξip, the
test inclusion in embedded into an overlapping region with the interphase’s stiffness tensor Cip and strain ε̂(ξi); (c) In state
ξj ∈ Ξnp, the test inclusion in embedded into an overlapping region with the nanoparticle’s stiffness tensor Cnp and strain
ε(ξj).

spatial variations should have a minor effect of the effective properties. However, if these spatial variations438

are needed, the inclusion could be discretized as in [25]. By taking all overlapping states into account, we439

can get the expected values of the strain 〈εtest
np 〉 in the nanoparticle phase and 〈εtest

ip 〉 in the interphase of the440

test inclusion (see equation (A.1) and (A.2)). In order to close the scheme, the equations of average strain441

and stress are needed, which are given as442

ε̄ = (1− fnp − fip)ε̄m + λ
(
V np〈εtest

np 〉+ V ip〈εtest
ip 〉

)
, (62)

and443

σ̄ = C0 : ε̄+ λ
(
V npδCnp : 〈εtest

np 〉+ V ipδCip : 〈εtest
ip 〉

)
, (63)

where 〈εnp〉 and 〈εip〉 are the expectations of strain in the nanoparticle phase and interphase respectively.444

Finally the effective stiffness tensor C̄ of the Boolean-Poisson model with two-phase inclusions can be445

expressed as446

C̄ = C0 + λ
(
V npδCnp : 〈Anp〉+ V ipδCip : 〈Aip〉

)
, (64)

where 〈Anp〉 and 〈Aip〉 are defined in equation (A.8). More detailed derivations are provided in Appendix447

A.448

6.2. Inverse modeling of interphase properties449

Next, we will demonstrate how to combine our micromechanics model with experiment data from a450

composite to approximate the interphase properties in 3-D. We use the experimental data of carbon-black451

filled styrene butadiene rubbers with various volume fractions of fillers (0%, 2.4%, 13.0%, 16.7%, 20.0%452

and 23.0%) from Diani’s paper [27], where 0% filler represents the matrix properties. Dynamic mechanical453

analysis (DMA) was used to experimentally characterize the linear viscoelasticity of each material, and the454

master curves of the storage modulus E′ and loss modulus E′′ were reconstructed at a reference temperature455

0◦C. The matrix and interphase are considered nearly incompressible with Poisson’s ratios of ν0 = 0.499456

and νip = 0.499 respectively. The Young’s modulus and Poisson’s ratio of the nanoparticle material (carbon-457

black) are Enp = 30 GPa and νnp = 0.19 respectively. The complex modulus and thickness of the interphase458

are assumed to be independent of the volume fraction of nanoparticles.459

A flowchart describing the inverse modeling of interphase properties is provided in Figure 10. For a460

given interphase thickness dip, together with the known properties of the matrix and nanoparticle materials,461

the effective complex modulus of a simulated composite E∗simulated is only a function of the interphase’s462

complex modulus E∗ip, based on equation (64). As shown in the “Optimization” box, the objective is to463

find the optimum interphase complex modulus that minimizes the difference between the simulated effective464

modulus E∗simulated(E∗ip) and the experimentally measured value E∗expt for the same composite material. Since465
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Figure 10: Flowchart summarizing the inverse modeling of interphase properties based on the extended micromechanics method
developed in this work. The interphase properties are assumed to be independent of the amount of fillers.

no constraint is put on the interphase properties in our current work, the optimization problem becomes a466

root-finding exercise, which solves for E∗ip such that467

δE∗ = E∗simulated(E∗ip)− E∗expt = 0 at each frequency point. (65)

The experimental data for nanoparticle volume fraction 20% is chosen as the reference for E∗expt. In order468

to solve equation (65), we use the secant method to search for the complex modulus of the interphase at469

every frequency point. The recurrence relation using the secant method can be written as470

E∗ip[n] = E∗ip[n− 1]− δE∗[n− 1]
E∗ip[n− 1]− E∗ip[n− 2]

δE∗[n− 1]− δE∗[n− 2]
, (66)

where n denotes the iteration number. We will continue this process until we reach a sufficiently high level of471

accuracy with respect to the experimental results for the composite modulus. After obtaining the interphase472

modulus E∗ip, we can calculate the effective properties of another composite with a different amount of fillers473

(specifically we compare to a volume fraction 23%). By comparing these predictions with experimental data,474

we can evaluate whether the choice of the interphase thickness (dip) is physical.475

Using the procedure in Figure 10, the interphase thickness (dip) is found to be in the range476

dip = 0.60Rnp to 0.65Rnp, (67)

which gives converged interphase modulus, as well as accurate predictions of the effective dynamic moduli477

within the whole frequency range (1 − 108 Hz). For typical nanoparticles with radius Rnp = 30 nm, the478

interphase thickness is around 18−20 nm, which is realistic according to AFM nano-indentation experiments479

in [9]. In this section, we will show the results for dip = 0.62Rnp.480

The predicted dynamic moduli of the interphase are shown in Figure 11 together with those of the481

matrix material. As we can see from the figure, the dynamic moduli of the interphase is higher than the482

dynamic moduli of the matrix across the whole frequency range due to the presence of polymer-nanoparticle483

interaction. Also the ratio of interphase dynamic moduli to the dynamic moduli of bulk matrix is larger484

in the lower frequency (higher temperature) domain indicating a stronger effect of polymer-nanoparticle485

interaction.486
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Figure 12: Experimental validation of the inversely predicted interphase properties for nanoparticle volume fraction 2.4%,
13.0% and 16.7%. The solid lines are the predicted dynamic moduli based on the interphase properties shown in Figure 11
with thickness dip = 0.62Rnp. Predictions for nanoparticle volume fraction 23% and 33.0% are also provided for comparison.

Furthermore, the predicted dynamic moduli and the choice of the interphase thickness are validated487

against experimental data with nanoparticle volume fraction 2.4%, 13.0% and 16.7%. As we can see from488

Figure 12, the experimental data agrees well with the predictions of the extended micromechanics method489

across the whole frequency range. Since our model’s interphase properties and thickness were predicted with490

one set of filler volume fractions (20% and 23%) and – using these interphase properties – the model showed491

agreement for a different set of volume fractions (2.4%, 13.0% and 16.7%), it is suggested by our proposed492

method that the amount of nanoparticles has little influence on interphase properties.493

7. Conclusion494

This paper proposed a new mathematical framework of overlapping geometries that allows for the study495

of dilute particles, clustered particles and interacting interphases in polymer nanocomposites. Weighted-496
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mean and additive overlapping conditions were introduced to consider various physical phenomena in the497

overlapping regions. The corresponding inclusion-wise strain definitions and integral equations under these498

two overlapping conditions were derived. This framework was applied to linear elastic clusters of particles499

as well as viscoelastic materials with interphases. Using a Boolean-Poisson model, DNS results under both500

weighted-mean and additive overlapping conditions were well captured by the proposed method. The method501

was also capable of capturing the effect of various distributions of inclusions, while the Mori-Tanaka and502

self-consistent methods depend only on volume fraction of the overall inclusion phase. Finally, the proposed503

method was applied to a viscoelastic of polymer nanocomposite with an interphase region (i.e., carbon-black504

filled styrene butadiene rubbers system) . The inversely predicted interphase properties, including interphase505

thickness and complex modulus,were further validated by experimental data. For reinforcing particles with506

radius of 30 nm, the thickness of the interphase region was found to be around 18− 20 nm. The model also507

suggested that interphase properties may be independent of filler volume fraction for the system studied.508

The methods presented above rely on the general assumption of linear material behavior. While exten-509

sions to non-linear material behavior is not explored here, the methods of Pedro Ponte Castaeda (nonlinear510

bounds [35], second-order estimation of nonlinear phase potential [36]), and George J. Dvorak (transfor-511

mation field analysis [37]) seem to be the most promising areas for extension of this work to non-linear512

regimes. However, despite the linear modeling limitation, the range of applications for the present work513

is still large, due to the extensive challenge of representing RVE scale elastic properties based on complex514

nanoscale morphologies, and the broad applications of viscoelastic materials ranging in scale from consumer515

goods [4] to civil engineering [38].516
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Appendix A. Expectation of strains in Boolean-Poisson model with two-phase inclusions522

By taking all overlapping states shown in Figure 9 into account and using equation 61 of volume fraction523

fnp and fip, we can calculate the expected values of the strain 〈εtest
np 〉 in the nanoparticle phase and 〈εtest

ip 〉524

in the interphase of the test inclusion as525

〈εtest
np 〉 = (1− fnp − fip)Tnp

(ξ0) : ε̄m + fipT
np
(ξi)

: Aip : ε̄+

(
fnp
λV np

− eλV
np

)
Anp : ε̄ (A.1)

and526

〈εtest
ip 〉 = (1− fnp − fip)Tip

(ξ0) : ε̄m +

(
fip
λV ip

− eλ(V np+V ip)

)
: Aip : ε̄, (A.2)

where λ is the rate of the stationary Poisson point process in the Boolean-Poisson model (see Section 5.2).527

Also, V np and V ip denote the volumes of the nanoparticle phase and the interphase in each inclusion. The528

concentration tensors T in the test inclusion are529

Tnp
(ξ0) =

[
I + S0 : (C0)−1 : (Cnp −C0)

]−1
, Tnp

(ξi)
=
[
I + Sip : (Cip)−1 : (Cnp −Cip)

]−1
(A.3)

and530

Tip
(ξ0) =

[
I + S0 : (C0)−1 : (Cip −C0)

]−1
. (A.4)

The strain concentration tensors A of the nanoparticle and interphase materials are related to the properties531

of the effective medium,532

Anp =
[
I + S̄ : (C̄

−1
: (Cnp − C̄)

]−1

and Aip =
[
I + S̄ : (C̄

−1
: (Cip − C̄)

]−1

. (A.5)
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According to the consistent equation (62), the average strain in the matrix can be written as533

(1− fnp − fip)ε̄m = ε̄− λ
(
V np〈εtest

np 〉+ V ip〈εtest
ip 〉

)
, (A.6)

By substituting equation (A.1) into (A.2) and (A.6 and rearranging the fomulation, we obtain the system534

of equations for solving 〈εtest
np 〉 and 〈εtest

ip 〉,535

[
I + λV npTnp

(ξ0) λV ipTnp
(ξ0)

λV npTip
(ξ0) I + λV ipTip

(ξ0)

] [
〈εtest
np 〉
〈εtest
ip 〉

]
=

T
np
(ξ0) + fipT

np
(ξi)

: Aip +

(
fnp
λV np

− eλV np

)
Anp

Tip
(ξ0) +

(
fip
λV ip

− eλ(V np+V ip)

)
: Aip

 ε̄ (A.7)

Finally the expected values of strain in the test inclusioin can be solved as a function of the average strain536

ε̄ based on equation (A.7),537

〈εtest
np 〉 = 〈Anp〉 : ε̄ and 〈εtest

ip 〉 = 〈Aip〉 : ε̄ (A.8)
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