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Abstract

The discovery of efficient and accurate descriptions for the macroscopic behavior of materials with com-
plex microstructure is an outstanding challenge in mechanics of materials. A mechanistic, data-driven,
two-scale approach is developed for predicting the behavior of general heterogeneous materials under irre-
versible processes such as inelastic deformation. The proposed approach includes two major innovations:
1) the use of a data compression algorithm, k-means clustering, during the offline stage of the method to
homogenize the local features of the material microstructure into a group of clusters; and 2) a new method
called self-consistent clustering analysis used in the online stage that is valid for any local plasticity laws
of each material phase without the need for additional calibration. A particularly important feature of the
proposed approach is that the offline stage only uses the linear elastic properties of each material phase,
making it efficient. This work is believed to open new avenues in parameter-free multi-scale modeling of
complex materials, and perhaps in other fields that require homogenization of irreversible processes.

Keywords: multi-scale, reduced order model, plasticity, data compression, k-means clustering,
self-consistent method

1. Introduction1

Materials are hierarchical in nature, involving an inter-play between simple small-scale constituents2

that together form elaborate compounds that can span multiple time- and length-scales. This multi-scale3

nature of heterogeneous materials poses a continuing challenge in computational modeling of macroscopic4

structures. Ideally, efficient and accurate predictions of the macroscopic behavior of heterogeneous materials5

should be uniquely obtained from the constitutive behavior of each separate constituent (material phase)6

and from the information about the material microstructure.7

Traditional phenomenological constitutive relations [1, 2, 3] characterize the average behaviors of the8

material, i.e the contributions from all the material phases are not accounted for as an individual interaction9

of separate constituents. These laws regard materials as “black boxes,” implying the need for burdensome10

experimental characterization and tedious calibration. In addition, they are problem-dependent and tend to11

fail when capturing highly localized microstructure-induced nonlinear material behaviors, such as plasticity,12

damage and fatigue.13

Concurrent multiscale methods [4, 5, 6, 7, 8, 9, 10, 11] avoid this calibration process by directly estab-14

lishing the connection between the microstructure and the macro-response of materials. These concurrent15

methods link to every macroscopic point of a structure a high-fidelity simulation of a Representative Unit16

Cell (RUC) [12, 13] of the microstructure. Since each RUC is already associated to a large computational17

cost, the total computational cost of this approach is tremendous.18

∗Corresponding author
Email address: w-liu@northwestern.edu (Wing Kam Liu)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering September 16, 2019



A myriad of methods have been developed with the goal of finding an appropriate balance between cost19

and accuracy; these are generally referred as reduced order models. Analytical micromechanical methods20

[14, 15, 16, 17], the Voronoi cell finite element method [18], fast Fourier transforms [19], spectral methods21

[20], the generalized method of cells [21], the transformation field analysis (TFA) [22], the nonuniform trans-22

formation field analysis (NTFA) [23, 24], the principal component analysis [25, 26, 27] or proper orthogonal23

decomposition1 (POD) [28, 29, 30, 31], and the proper generalized decomposition (PGD) [32, 33, 34, 35, 36]24

are some of the most successful methods of this kind.25

Analytical micromechanical methods [14, 15, 16, 17] are very efficient because they describe the hetero-26

geneous material by several microstructural descriptors, rather than considering the whole representative27

unit cell explicitly. However, they are based on mean-field assumptions and linear superposition. This limits28

their applicability when complex microstucture and localized nonlinear material behavior such as plasticity29

are present.30

POD uses linear combinations of all input variables to define the principal components (modes) to make31

the predictions for general load cases. This is a fundamental issue when describing nonlinear irreversible32

plastic processes that is only mitigated by using many snapshots in the offline stage which increases the33

computational cost of the online stage to unreasonable values [29, 37].34

The NTFA introduced by Michel and Suquet [23] and further explored by Oskay and Fish [38] among35

others [39, 40], approaches the problem differently with the aim of drastically reducing computational cost36

[39]. The idea behind NTFA is to leverage the capabilities of analytical micromechanical methods to define37

a set of reduced variables (e.g. plastic strain fields and internal variables of the local constitutive laws)38

that are then subjected to “evolution equations” [23, 41]. Consequently, the computational cost of NTFA39

is low but the inclusion of empirical laws that require further calibration is a limitation. Furthermore, the40

representative unit cells need to be subjected to irreversible deformation to obtain the plastic modes (as in41

POD) which leads to an extensive exploration of the deformation space at the offline stage.42

In this article a new approach is proposed where the above-mentioned limitations are addressed simul-43

taneously by meeting three fundamental goals: 1) avoiding to have an extensive exploratory offline stage44

(as in NTFA and especially POD), by limiting this stage to the characterization of the elastic behavior45

of the representative unit cell; 2) eliminating the need to find reduced macro-constitutive equations (as in46

NTFA), i.e. only using the local constitutive equations of each phase present in the representative unit cell47

without calibration of additional laws; and 3) achieving a reduction in computational time of several orders48

of magnitude without significantly compromising accuracy.49

In order to achieve these goals two fundamental contributions are introduced in Section 2: a new analysis50

method applicable to any reduced RUC; and a procedure based on a data compression algorithm to obtain51

any reduced RUC. Section 3 shows the results and discusses the accuracy and efficiency of the methodology.52

Concluding remarks are provided in Section 4.53

2. Methodology54

The starting point is a high-fidelity Representative Unit Cell (RUC) of the material, i.e. a representative55

domain of the microstructure of a material. This high-fidelity RUC can be analyzed by different methods, e.g.56

finite element or meshfree methods, such that accurate predictions of the material’s mechanical behavior are57

achieved. However, the computational cost associated to these RUCs is usually significantly large because58

they involve a very fine numerical discretization to capture the microstructural shapes of the material and59

its detailed mechanical behavior.60

With the aim of lowering the computational expense one may consider to decompose the high-fidelity61

RUC into a group of large subdomains, obtaining a reduced RUC – Figure 1. These subdomains are62

designated as material clusters henceforth. However, if one uses the same analysis method considered63

for the high-fidelity RUC, the resolution for the analysis is degraded and the accuracy of the predictions64

decreases. For example, if using the finite element method the larger subdomains (material clusters) would65

1The mechanics community refers to principal component analysis as proper orthogonal decomposition (POD).
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Figure 1: Illustration of arbitrary domain decomposition for a high-fidelity RUC transforming it into a reduced RUC with just
8 subdomains (clusters).

have to correspond to larger finite elements, introducing limitations in the shape of these clusters and the66

accuracy of the solution.67

This poses an interesting question: for large and irregular material clusters, what is the appro-68

priate analysis method that maintains good accuracy for the predictions of the reduced RUC?69

In order to answer this question, assume an arbitrary domain decomposition of the RUC. The procedure70

used to determine these material clusters will be introduced later in Section 2.2.1. In addition, assume71

that every local variable β(x) within each material cluster is uniform. This is equivalent to considering a72

piecewise uniform approximation to the local variables of interest in the RUC2:73

β(x) =

k∑
I=1

βIχI(x), (1)

where βI is the homogeneous variable in the I-th material cluster and χI(x) is the characteristic function74

in the domain of the I-th material cluster ΩI , defined as75

χI(x) =

{
1 if x ∈ ΩI

0 otherwise
(2)

from which the following cluster averaging relationship can be written,76 ∫
Ω

χI(x)[•]dx ≡
∫

ΩI

[•]dx (3)

where [•] signifies any quantity of interest to be averaged in the cluster domain ΩI .77

Under these assumptions, a system of equations can be derived by successively homogenizing each mate-78

rial cluster via the Lippmann-Schwinger equation. The procedure is applicable to any domain decomposition79

considered and is presented next.80

2.1. Lippmann-Schwinger homogenization for multiple clusters81

Generally, the equilibrium condition without body force in a material domain Ω can be written as82

∂σij(x)

∂xi
= 0 in Ω. (4)

2For example, if the variable of interest is local strain: β(x) ≡ ε(x)
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By introducing a homogeneous isotropic linear elastic reference material with stiffness C0, the real stress in83

the heterogeneous material can be divided into two parts,84

σ(x) = C0 : ε(x) + p(x), (5)

where p(x) is the so-called polarization stress, which denotes the difference between the real stress and the85

stress in the reference material under the same strain. By substituting equation (5) into (4), we obtain86

C0
ijkl

∂εkl(x)

∂xi
= −∂pij(x)

∂xi
in Ω. (6)

With the help of the Green’s function Φ0(x,x′) which represents the strain at x contributed by a concentrated87

external stress at x′ in a homogeneous reference material, the original equilibrium condition can be rewritten88

in an integral form if we regard the polarization stress as an external stress on the reference material [15, 42],89

90

ε(x) +

∫
Ω

Φ0(x,x′) : p(x′)dx′ − ε0 = 0, (7)

where ε0 is the far-field strain, which is homogeneous in the reference material and controls the evolution of91

the strain ε(x). By substituting equation (5) into (7), we obtain the integral equation in terms of the local92

strain ε(x),93

ε(x) +

∫
Ω

Φ0(x,x′) :
[
σ(x′)−C0 : ε(x′)

]
dx′ − ε0 = 0. (8)

In order to solve ε(x) in the integral equation (8), constraints are needed from the macroscopic boundary94

conditions. In specific, if a macro-strain constraint is used:95

1

| Ω |

∫
Ω

ε(x)dx = ε̄, (9)

or if a macro-stress constraint is considered:96

1

| Ω |

∫
Ω

σ(x)dx = σ̄. (10)

Similarly, we can also define mixed constraints. For example, the constraints under uniaxial tension loading97

are98

1

| Ω |

∫
Ω

ε11(x)dx = ε̄11 if i = j = 1; otherwise ,
1

| Ω |

∫
Ω

σij(x)dx = σ̄ij = 0. (11)

For convenience, equation (8) can be written in incremental form:99

∆ε(x) +

∫
Ω

Φ0(x,x′) :
[
∆σ(x′)−C0 : ∆ε(x′)

]
dx′ −∆ε0 = 0, (12)

Integral equation (8) or (12) are also known as Lippmann-Schwinger equation, and solving such an100

integral equation for every point would be very time-consuming and even slower than the actual simulation101

of the high-fidelity RUC using finite element analysis, for example. However, recall that the high-fidelity102

RUC was decomposed into finite material clusters to form a reduced RUC (see Figure 2). With this in mind,103

the Lippmann-Schwinger equation is averaged for each cluster:104

1

cI | Ω |

∫
Ω

χI(x)∆ε(x)dx +
1

cI | Ω |

∫
Ω

∫
Ω

χI(x)Φ0(x,x′) :
[
∆σ(x′)−C0 : ∆ε(x′)

]
dx′dx−∆ε0 = 0, (13)

where this equation follows directly from averaging equation (12) within the I-th cluster, and where the first105

term corresponds to ∆εI . Moreover, recalling the piecewise uniform assumption of all the local variables,106

equation (1),107

∆ε(x) =

k∑
J=1

χJ(x)∆εJ , ∆σ(x) =

k∑
J=1

χJ(x)∆σJ (14)
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where ∆εJ and ∆σJ are the incremental stain and stress in the J-th cluster. Hence, equation (13) can be108

simplified according to these relations as,109

∆εI +

k∑
J=1

[
1

cI | Ω |

∫
Ω

∫
Ω

χI(x)χJ(x′)Φ0(x,x′)dx′dx

]
:
[
∆σJ −C0 : ∆εJ

]
−∆ε0 = 0. (15)

where the term within brackets is a well-defined quantity in micromechanical analysis of materials: the110

interaction tensor DIJ ,111

DIJ =
1

cI | Ω |

∫
Ω

∫
Ω

χI(x)χJ(x′)Φ0(x,x′)dx′dx, (16)

written as an integral of Green’s function Φ0(x,x′) in a RUC domain Ω with periodic boundary conditions,112

and where cI is the volume fraction of the I-th cluster and | Ω | is the volume of domain Ω.113

Equation (13) can then be re-written considering equation (16) as114

∆εI +

k∑
J=1

DIJ :
[
∆σJ −C0 : ∆εJ

]
−∆ε0 = 0. (17)

This is an integral equation for each I-th cluster, which can be used together with the previously defined115

macro-strain or macro-stress constraints in incremental form:116

k∑
I=1

cI∆εI = ∆ε̄ or

k∑
I=1

cI∆σI = ∆σ̄, (18)

Remark 1. The system of equations composed by k equations (17) and the respective constraint equations117

(18) is the main result of this section. This closed system of equations arises from the averaging of the118

Lippmann-Schwinger equation for each cluster.119

Note that equations (17) and (18) do not depend on the strain concentration tensor or on any additional120

parameters or constitutive laws. This contrasts with approaches such as TFA [22] and NTFA [23, 39]. Also121

note that the separate averaging of the Lippmann-Schwinger equation introduced in this section implies that122

stresses in adjacent clusters are not enforced to be continuous, but the global average of the local strains and123

stresses are constrained to coincide with the macroscopic applied strain or stress. In a way, this is similar to124

what happens in the finite element discretization of the conservation of linear momentum equation where125

the continuity of stresses is also not enforced between adjacent elements, but global equilibrium is satisfied.126

The system of equations (17-18) requires the previous determination of the material clusters (domain127

decomposition), followed by the computation of the interaction tensors DIJ between each pair of clusters.128

This a priori analysis is conveniently called the “offline” or training stage. The “online” or predictive stage129

comprises the actual solution of the system of equations (17-18) for any loading conditions applied to the130

RUC. Section 2.2 describes the offline stage, where a strategy to find the reduced RUC previously mentioned131

is proposed. Section 2.3 presents the details of the online stage. Figure 2 shows a schematic of the developed132

framework summarizing the methodology.133

2.2. Offline stage134

How can one perform the domain decomposition in the “offline stage”? Different methodologies can135

be adopted. The goal is to group points that have similar mechanical behavior under any applied loading136

condition. An optimal strategy to find the material clusters is proposed next by using a data compression137

algorithm called k-means clustering.138
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Figure 2: Flowchart summarizing the self-consistent clustering analysis developed in this work. Compared to other reduced
order models the offline stage is trivial because it only involves a linear elastic analysis of the representative unit cell (RUC).

2.2.1. Domain decomposition via k-means clustering139

A simple yet effective way of characterizing points in the material with similar mechanical behavior140

is by evaluating the elastic response of the high-fidelity RUC and computing at every point the strain141

concentration tensor A(x). This tensor relates the elastic microscopic strain εmicro(x) to the homogeneous142

elastic macroscopic strain εmacro,143

εmicro(x) = A(x) : εmacro, (19)

where the macroscopic strain εmacro is directly related to the periodic boundary conditions of the RUC [12].144

By definition, the similarity between two data points is characterized by the difference between their145

strain concentration tensors. In other words, if two data points have equivalent strain concentration tensors,146

they have exactly the same mechanical behavior under any loading condition within the elastic regime.147

Moreover, these points should also have similar nonlinear plastic response, since the localization of plasticity148

occurs at points with high strain concentrations.149

For a 2-dimensional (2D) material, the strain concentration tensor A(x) in each material point has 9 in-150

dependent components which are determined by direct numerical simulation (DNS) of the high-fidelity RUC151

under 3 orthogonal loading conditions. While for a 3-dimensional (3D) material, A(x) has 36 independent152

components, needing a set of DNS under 6 orthogonal loading conditions. The format of the raw data for153

a 2D material is shown below,154

13
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where the dimension of the data is 9 in the 2D case, and N is the total number of discretization points in the155
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DNS. For example, if the high-fidelity RUC is discretized by a 600× 600 finite element mesh with reduced156

integration elements, then N is equal to 3.6× 105.157

Remark 2. Understanding the above selection for measuring mechanical similarity is crucial. Other metrics158

for similarity could be used but that would have direct effects on the reduction of the number of degrees of159

freedom by forming material clusters. For example, a simpler metric would be to group data points according160

to their spatial proximity (disregarding their mechanical similarity), as was done later in this article for161

comparison (Figure 6).162

The next step is to perform the domain decomposition by grouping similar data points using a clustering163

algorithm called k-means clustering [43]. Note that the data points grouped by the k-means clustering164

do not need to be adjacent to each other. These points belong to the same cluster because their strain165

concentration tensor is approximately the same, but they can be in disconnected parts of the RUC – see166

in Figure 3 irregular and disconnected clusters represented by the same color for two different material167

microstructures.168

(a) (b) 

(d) (c) 

Figure 3: Two-dimensional k-means clustering results of (a,c) the cross-section of a fiber-reinforced composite with identical
circular inclusions embedded in a matrix material and (b,d) a two-phase amorphous structure from a two-dimensional phase-
field simulation based on the Cahn-Hilliard equation [44]. For both microstructures, phase 1 (matrix) was discretized into 8
clusters in (a,b) and 32 clusters in (c,d), while the discretization of phase 2 is not shown here for clarity. Note that one
cluster is a group of separate subdomains indicated by the same color.

Figure 3a) and b) show the reduced RUC domain decomposition considering only 8 clusters for the169

matrix phase, while figures c) and d) were obtained considering 32 clusters for the same phase. Regions170

with the same color represent the same cluster. Recall that the methodology proposed in this work assumes171

that the local variables in each cluster are uniform. Therefore, in this example the finite element mesh of the172

high-fidelity RUC that had three hundred and sixty thousand elements was reduced to a few clusters (8 or173

32) that can be used to solve the system of equations (17-18). This represents an extensive data compression174

that is expected to lead to tremendous computational savings in the posterior online stage.175
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Clustering methods have been widely applied to different fields, from pattern recognition and image seg-176

mentation to bioinformatics [45, 46]. Recently, a large spectrum of clustering algorithms has been developed,177

such as hierarchical clustering, k-means clustering and distribution-based clustering [47]. In this manuscript,178

a particular kind of centroid-based clustering named k-means clustering [43] is applied to compress the data.179

In k-means clustering all the data points are partitioned into k clusters in the following manner:180

1. Evaluate the quantity of interest (e.g, strain-concentration tensor) at each point in the domain;181

2. Group all the points into k clusters such that the difference between the quantity of interest at each182

point within the cluster is minimal when compared to the average value of that quantity inside that183

cluster.184

For the case of the RUC, the suggested quantity of interest is the strain concentration tensor. Hence, this185

means that a cluster J contains the points whose strain concentration tensor A(x) is closer to the average186

strain concentration tensor of that cluster ĀJ when compared to the average strain concentration tensor ĀI187

of any other cluster I (for I 6= J). Once again it is noted that the clusters are not necessarily of the same188

size and do not need to be continuous, see Figure 3.189

Mathematically, given a set of strain concentration tensors the objective of k-means clustering is to190

minimize the within-cluster least squares sum for the k sets S = {S1, S2, ..., Sk} to obtain the shape of the191

clusters:192

S = argmin
S′

k∑
J=1

∑
n∈SJ

||An − ĀJ ||2, (20)

where An is the strain concentration tensor of the n-th data point, and ĀJ is the mean of all the strain193

concentration tensors at the points within the cluster SJ . The above norm is defined as usual, e.g. for a194

general second-order matrix Z of dimension m×m195

||Z|| =

√√√√ m∑
i=1

m∑
j=1

z2
ij =

√
trace(ZTZ), (21)

and is called the Frobenius norm of matrix Z.196

The algorithms for solving the k-means clustering problem are well developed, such as the standard197

algorithm (Lloyd’s algorithm) [48] or fast k-means clustering algorithm proposed by Kanungo et al. [49].198

In this article the standard algorithm was used, with more details provided in Appendix A. Note that the199

choice of the number of clusters k defines the degree of data compression achieved.200

Mathematically, the “Silhouette Index” [50] can be used to measure the quality of clustering; however,201

this may not be sufficient when considering the predictions of the mechanical behavior. Typically, a larger202

number of clusters (larger k) used in the offline stage leads to more accurate predictions in the online stage203

since more information was stored, but the number of degrees of freedom increases correspondingly. The204

computational cost associated with this increase is discussed in later sections. As a result, the choice for the205

number of clusters should keep a balance between the compression ratio of the data set and the accuracy of206

the prediction.207

Remark 3. Clustering depends on specific choices of data type (in this case, strain concentration tensor),208

distance definition (Frobenius norm) and clustering algorithm (k-means clustering). Other selections could209

be made with direct influence on the mechanical behavior predicted. This exploratory effort is expected to be210

conducted in future studies.211

2.2.2. Computing the interaction tensors212

After the domain decomposition that determines the material clusters, one needs to compute the inter-213

action tensors between clusters. The interaction tensor DIJ represents the influence of the stress in the J-th214
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cluster on the strain in the I-th cluster. As mentioned previously, the interaction tensor can be written as215

an integral of Green’s function in a RUC domain Ω with periodic boundary conditions,216

DIJ =
1

cI | Ω |

∫
Ω

∫
Ω

χI(x)χJ(x′)Φ0(x,x′)dx′dx, (22)

where cI is the volume fraction of the I-th cluster and | Ω | is the volume of domain Ω. Φ0(x,x′) is the217

fourth-order periodic Green’s function associated with an isotropic linear elastic reference material with218

stiffness tensor C0. The definition and function of the reference material is discussed in Section 2.3. Also219

note that the interaction tensor DIJ has to be a fourth-order tensor. In addition, by inspection of equation220

(16), it can be seen that221

cIDIJ = cJDJI . (23)

When the reference material is linear elastic (including isotropic and anisotropic), the Green’s function222

is explicitly known in Fourier (frequency) space. For simplicity, we restrict the reference material to be223

isotropic linear elastic in this article, so that its Green’s function takes the following form in Fourier space,224

Φ̂0
ijkl(ξ) =

1

4µ0 | ξ |2
(δikξjξl + δilξjξk + δjlξiξk + δjkξiξl)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξl
| ξ |4

, (24)

where ξ is the coordinate in Fourier space corresponding to x in real space, λ0 and µ0 are Lamé constants of225

the reference material. The formulation in equation (24) works for both 2D plane strain and 3D materials.226

For convenience, the Green’s function Φ̂0
ijkl(ξ) can be rewritten in two parts:227

Φ̂
0
(ξ) =

1

4µ0
Φ̂

1
(ξ) +

λ0 + µ0

µ0(λ0 + 2µ0)
Φ̂

2
(ξ) (25)

where each part can be written as228

Φ̂1
ijkl(ξ) =

1

| ξ |2
(δikξjξl + δilξjξk + δjlξiξk + δjkξiξl) and Φ̂2

ijkl(ξ) = −ξiξjξkξl
| ξ |4

, (26)

Since Φ̂
1
(ξ) and Φ̂

2
(ξ) do not depend on the material properties, only the coefficients before them need229

to be updated if the elastic constants λ0 and µ0 of the reference material change. This feature of Φ̂
0
(ξ)230

is essential to the self-consistent scheme as introduced in Section 2.3. Moreover, the convolution term in231

equation (16) can be translated into a direct multiplication based on a Fourier transformation,232 ∫
Ω

χI(x′)Φ0(x,x′)dx′ = F−1
(
χ̂I(ξ)Φ̂

0
(ξ)
)

(27)

where χ̂I(ξ) is the characteristic function in the I-th cluster in the Fourier space. Only a one-time calculation233

is needed for computing all the interaction tensors, which can then be used for considering complex material234

behavior.235

2.3. Online stage: Self-consistent clustering analysis236

If an actual prediction of the local strains in the RUC for any constitutive behavior of the phases is to237

be obtained, then two points still need to be discussed: 1) the choice of the reference material stiffness C0;238

and 2) the algorithmic details to find the iterative solution for equations (17) and (18).239

Concerning the first point, it is highlighted that the local strain ε(x) solved from the continuous240

Lippmann-Schwinger equation, i.e. equation (8) or (12), does not depend on the choice of C0. On the241

other hand, the choice of C0 affects the convergence rate of the iterative solution scheme for the discrete242

Lippmann-Schwinger equation as pointed out in [19, 51, 52, 53]. Despite the influence on the convergence243

rate, the converged solution reached by the discretized scheme should be the same and independent of the244

choice of C0, which could be regarded as a preconditioner of the iterative scheme. This can be explained by245
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the fact that the physical problem is completely determined by the equilibrium condition and macroscopic246

constraints. The far-field strain ε0 in those equations just assumes a different value according to the choice247

of C0 such that the same solution for the local strain in the RUC is obtained. Therefore, in theory one can248

choose any reference stiffness C0 for the homogeneous linear elastic material. In practice, this is not the249

case – see Remark 4.250

Remark 4. The solution of the discrete Lippmann-Schwinger equations when finding the local strain in251

each cluster by solving equations (17) and (18) is actually affected by the choice of the reference stiffness252

C0.253

Section 2.3.1 presents the algorithmic details to solve the discrete equations (17) and (18) considering254

a constant C0 first. Then, in Section 2.3.2, a discussion of the importance of a self-consistent scheme for255

updating C0 upon deformation is presented.256

2.3.1. Algorithm for constant C0
257

In general cases such as plasticity and damage, the incremental stress in the I-th cluster ∆σI is a258

nonlinear function of its incremental strain ∆εI , which means that the system of integral equations needs to259

be solved iteratively at every load increment. An implicit scheme is adopted herein, and both macro-strain260

and macro-stress constraints are considered.261

As mentioned before, the unknown variables of the system are the incremental strain in each cluster ∆εI262

and the far field strain ∆ε0, so {∆ε} = {∆ε1; ...; ∆εk; ∆ε0}. To begin, the residual of the integral equation263

in the I-th cluster at iteration step n is defined as264

rI ({∆ε}n) = ∆εIn +

k∑
J=1

DIJ :
[
∆σJn −C0 : ∆εJn

]
−∆ε0

n with I = 1, 2, ..., k, (28)

and the residuals of the macro-strain or macro-stress constraints are265

rk+1 ({∆ε}n) =

k∑
I=1

cI∆εIn −∆ε̄ or rk+1 ({∆ε}n) =

k∑
I=1

cI∆σIn −∆σ̄. (29)

In the implicit scheme, the residual {r} = {r1; ...; rk; rk+1} is linearized with respect to {∆ε}. After266

dropping terms of higher order than linear, it gives267

{r}+ {M}{δε} = 0 with {M} =
∂{r}
∂{∆ε}

, (30)

where {M} is called the system Jacobian matrix. For I, J = 1, 2, ..., k, we have268

MIJ = δIJI + DIJ :
(
CJ
alg −C0

)
and MI(k+1) = −I, (31)

where δIJ is the Kronecker delta in terms of indices I and J , and I is the fourth-order identity tensor.269

CJ
alg is the so-called algorithmic modulus (or tangent modulus) of the material in the J-th cluster and is an270

output of the local constitutive law for the current strain increment in that cluster ∆εJn,271

CJ
alg =

∂∆σJ

∂∆εJ
. (32)

Under the macro-strain constraint, the remaining components in the system Jacobian matrix are272

M(k+1)I = cII and M(k+1)(k+1) = 0. (33)

For macro-stress constraint, we have273

M(k+1)I = cICI
alg and M(k+1)(k+1) = 0. (34)
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Finally, the correction of the incremental strain can be expressed as274

{δε} = −{M}−1{r}. (35)

Based on the updated incremental strain, we can then use the constitutive relationship in each cluster to275

compute the new incremental stress {∆σ} = {∆σ1; ...; ∆σk}. The algorithm for the implicit scheme is given276

in the box below, where it is again highlighted that the constant C0 = Cinput is chosen by the analyst as277

an input Cinput. The most logic choice is to consider as reference the effective stiffness of the RUC that278

can be determined in the offline stage Cinput = Cmacro. However, as previously mentioned, other reference279

stiffnesses could be considered, e.g. the stiffness of the matrix phase Cinput = Cmatrix.280

Box 2.1 Algorithm for the implicit scheme with constant C0

1. Initial conditions and initialization: set {∆ε}0 = 0;n = 0; {∆ε}new = {∆ε}0; C0 = Cinput

2. Newton iterations for load increment n+ 1:

a. compute the incremental stress {∆σ}new based on material constitutive laws
b. use 28 and 29 to compute the residual {r} = f ({∆ε}new, {∆σ}new)
c. compute the system Jacobian {M}
d. solve the linear equation {δε} = −{M}−1{r}
e. {∆ε}new ← {∆ε}new + {δε}
f. check error criterion; if not met, go to 2a.

3. Update the incremental strain and stress: {∆ε}n+1 = {∆ε}new, {∆σ}n+1 = {∆σ}new;n← n+ 1

4. If simulation not complete, go to 2.

281

2.3.2. Algorithm with self-consistent C0
282

Remark 4 highlights that due to the discrete character of the approach the actual choice of the stiffness283

of the reference material C0 can affect the solution, contrary to what happens for the continuous form. This284

raises a question: Is there an optimal choice for C0?285

Here a self-consistent scheme is proposed to set the homogeneous tangent modulus of the reference286

material C0 approximately the same as the macroscopic tangent modulus (i.e. the effective tangent modulus287

of the RUC) even after plastic deformation occurs,288

C0 → Cmacro. (36)

Let’s start by considering the elastic case first, where the effective tangent modulus of the RUC does not289

change and coincides with the effective elastic stiffness of the RUC. By averaging the incremental integral290

equation 12 in the RUC domain Ω, we have291

∆εmacro +
1

|Ω|

∫
Ω

(∫
Ω

Φ0(x,x′)dx

)
: [∆σ(x′)−Cmacro : ∆ε(x′)] dx′ −∆ε0 = 0. (37)

According to the definition of periodic Green’s function Φ0(x,x′), the following integral results in a292

constant tensor which does not depend on x′,293 ∫
Ω

Φ0(x,x′)dx = S :
(
C0
)−1

, (38)

where S is the Eshelby’s tensor. By substituting equation (38) into (37), the following statement can be294

proved,295

∆ε0 = ∆εmacro, if C0 = Cmacro. (39)

This result can be extrapolated to the case of irreversible processes such as plasticity. For a given296

increment n, when C0
n tends to the tangent modulus of the RUC Cmacro

n , then the far-field strain ∆ε0
n tends297

to the macroscopic strain ∆εmacro
n . Hence, the name self-consistent reference tangent modulus.298
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For convenience, however, the tangent modulus Cmacro
n is considered as isotropic even during plasticity299

in order to still use the same form of Green’s functions, see equation (24). This is not true in general, since300

the plastic flow may introduce anisotropic behavior, especially under large deformations.301

Considering the reference tangent modulus as isotropic at every macroscopic load increment, the self-302

consistent scheme then needs to find the two independent Lamé parameters λ0
n and µ0

n for every load303

increment n that define C0
n,304

C0
n = f

(
λ0
n, µ

0
n

)
, (40)

such that the reference tangent modulus is closest to the macroscopic tangent modulus. The objective of305

the self-consistent scheme is then to find λ0
n and µ0

n from the following minimization,306 {
λ0
n, µ

0
n

}
= argmin
{λ′,µ′}

||∆σmacron − f (λ′, µ′) : ∆εmacron ||2, (41)

where ||Z||2 = Z : Z for an arbitrary second-order tensor Z. The macroscopic strain εmacron and stress307

σmacron at increment n are given by308

∆εmacron =

k∑
I=1

cI∆εIn and ∆σmacron =

k∑
I=1

cI∆σIn. (42)

Then the optimum point
(
λ0

opt, µ
0
opt

)
is found by computing the minimum of g(λ0

n, µ
0
n),309

g(λ0
n, µ

0
n) = ||∆σmacron − f

(
λ0
n, µ

0
n

)
: ∆εmacron ||2 (43)

via the respective partial derivatives,310

∂g

∂λ0
n

∣∣∣∣
λ0
opt,µ

0
opt

= 0 and
∂g

∂µ0
n

∣∣∣∣
λ0
opt,µ

0
opt

= 0, (44)

which basically forms a system of two linear equations in terms of the Lamé constants. The system always311

has a unique solution except under a pure-shear loading condition, where λ0
opt is underdetermined. In this312

case, the value of λ0
n is not updated. Additionally, g

(
λ0

opt, µ
0
opt

)
vanishes when the effective macroscopic313

homogeneous material is also isotropic linear elastic.314

This self-consistent scheme is also iterative, since the macroscopic incremental stress ∆σmacronew and strain315

∆εmacronew at the beginning of the increment are computed based on previous values of λ0
n and µ0

n. Note that316

in the algorithm that uses a constant C0, see Box 2.1, since the tangent modulus C0 is not updated that317

implies that the interaction tensors DIJ also do not need to be updated. This is no longer the case for the318

self-consistent algorithm, as presented in Box 2.2, since the interaction tensors given by equation (16) also319

depend on the updated reference Lamé parameters following equation (24). It is also noted that for the320

simulations considered in this work, the convergence of λ0 and µ0 can be reached within a small number of321

iterations (e.g. less than 5 for a tolerance 0.1%).322
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Box 2.2 Algorithm for the updated self-consistent implicit scheme

1. Initial conditions and initialization: set
(
λ0, µ0

)
; {∆ε}0 = 0;n = 0; {∆ε}new = {∆ε}0

2. For load increment n+ 1, update the interaction tensor DIJ and the stiffness tensor C0

3. Newton iterations:

a. compute the incremental stress {∆σ}new

b. use 28 and 29 to compute the residual {r} = f ({∆ε}new, {∆σ}new)
c. compute the system Jacobian {M}
d. solve the linear equation {δε} = −{M}−1{r}
e. {∆ε}new ← {∆ε}new + {δε}
f. check error criterion; if not met, go to 3a.

4. Solve 44, and
(
λ0, µ0

)
←
(
λ0

opt, µ
0
opt

)
5. Check error criterion; if not met, go to 2

6. Update the incremental strain and stress: {∆ε}n+1 = {∆ε}new, {∆σ}n+1 = {∆σ}new;n← n+ 1

7. If simulation not complete, go to 2.

323

With this last update we obtained a “self-consistent Lippmann-Schwinger multiple-cluster homogeniza-324

tion scheme” made computationally efficient by the data compression treatment proposed in Section 2.2.1325

where clusters (subdomains) of material with similar mechanical properties were determined. The self-326

consistency of the proposed scheme is optional, i.e. it is possible to use a constant reference stiffness tensor327

C0. However, the convergence of the scheme is improved as shown next. We note that the scheme is328

standalone: there are no additional parameters nor evolution laws, unlike the schemes reviewed in Section329

1.330

2.4. Microstructure and material modeling331

The proposed reduced order homogenization method was applied to 2D plane strain and 3D hetero-332

geneous materials under different load cases. As detailed in the previous sections, the whole modeling333

framework can be divided into two stages: 1) offline stage; and 2) online stage.334

In the 2D plane strain examples, two types of materials with different microstructures as shown in Figure335

3 are analyzed. The first one is a composite material with identical circular fibers (phase 2) embedded in336

the matrix (phase 1), where the fiber volume fraction was considered as Vf2 = 30%. The second 2D plane337

strain example is a two-phase material with microstructure obtained from a phase-field simulation based on338

the Cahn-Hilliard equation, where the volume fraction of either phase is equal to 50%. For convenience, the339

two types of materials are abbreviated as fiber-reinforced composite and amorphous material, respectively.340

Two examples in 3D are also presented: one was chosen as a two-phase composite material with identical341

spherical inclusions embedded in the matrix (volume fraction of 20%), and the other as an amorphous342

material with a microstructure obtained from a 3D phase-field simulation (volume fraction of 50%). All the343

microstructures considered in the examples are periodic.344

The same material properties are used in the 2D and 3D problems. For the linear elastic direct numerical345

simulations in the offline stage, the Young’s moduli and Poisson’s ratios of phase 1 and 2 are:346

E1 = 100 MPa, ν1 = 0.3; E2 = 500 MPa, ν2 = 0.19. (45)

Figure 3 showed the data compression achieved for the two RUCs used in the 2D examples considering347

8 or 32 clusters for phase 1 of the materials. Each reduced RUC obtained for a chosen number of clusters348

is then analyzed in the online stage. Note that the same reduced RUC can be used for predicting plastic349

behavior of the material with any local plasticity laws for each phase (no additional calibration needed).350

Therefore, the following examples considered two different plasticity laws in order to assess the predictive351

capabilities of the proposed approach.352

Two plasticity laws were considered in the online stage for phase 1 (the matrix material). Both laws353

considered a von Mises yield surface,354

f = σ̄ − σY (ε̄) 6 0, (46)
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where σ̄ is the von Mises equivalent stress, and the yield stress σY is given by the chosen hardening law that355

depends on the equivalent plastic strain ε̄.356

The first hardening law considered was piecewise linear and isotropic as follows,357

σY (ε̄) =

{
0.5 + 5ε̄ ε̄ ∈ [0, 0.04)

0.7 + 2ε̄ ε̄ ∈ [0.04,∞)
MPa. (47)

The other hardening law considered was the following power-law,358

σY (ε̄) = 0.1 + 0.3ε̄0.4 MPa. (48)

The plasticity simulations were conducted under different loading conditions. For example, under uniaxial359

tension the macroscopic strain ε11 is prescribed, and the macroscopic stresses vanish in all other directions:360

σij = 0 for i, j 6= 1. For pure shear loading condition, γ12 is imposed and the remaining stress-free conditions361

are applied similarly.362

The predictions given by the reduced order modeling, including macroscopic behavior and microscopic363

stress/strain fields, are validated against high-fidelity direct numerical simulations (DNS) using the finite364

element method with a fine mesh and imposing periodic boundary conditions. The computational efficiency365

of the proposed method is discussed as well.366

3. Results and discussion367

3.1. Two-dimensional linear elastic materials368

Before evaluating the plastic predictions of the reduced RUC, the elastic description is considered first.369

The importance of applying the self-consistent (SC) scheme for updating C0 is discussed herein as well.370

Figure 4 presents the RUC’s transverse Young’s moduli and Poisson’s ratios predicted by the proposed371

method with and without the self-consistent (SC) scheme as a function of the number of clusters chosen in372

the offline stage. For the approach without the self-consistent scheme, i.e. considering a constant reference373

stiffness C0, phase 1 (matrix) was considered as the reference material: C0 = Cmatrix. The number of374

clusters in phase 1 is denoted as k1, while k2 denotes the number of clusters in phase 2. In these examples k2375

was defined according to the volume fractions of the phases: for the fiber-reinforced composite the number376

of clusters in the fibers was chosen as approximately half the number of clusters in the matrix k2 = dk1/2e377

(recall that Vf2 = 30%); and for the amorphous material both phases were discretized with the same number378

of clusters k2 = k1 (recall that Vf1 = 50%). All the predictions are normalized with respect to the results379

of direct numerical simulations (DNS) obtained from a converged finite element analysis considering a fine380

mesh of elements:381

1. Fiber-reinforced composite: EDNS ≈ 156.4 MPa, νDNS ≈ 0.39;382

2. Amorphous material: EDNS ≈ 220.8 MPa, νDNS ≈ 0.35.383

Observing the figure there is an immediate characteristic of the presented solutions: the accuracy of384

the prediction improves by increasing the number of clusters in the system, as expected. Moreover, the385

predictions for the effective E and ν of the RUC for the fiber-reinforced composite are similar with or386

without the self-consistent (SC) scheme: both approaches converge within an error tolerance of 1% after387

assigning 8 clusters in phase 1 (matrix). However, convergence is significantly faster with the self-consistent388

scheme3 for the amorphous material (both for E and ν). These results confirm Remark 4: since the389

Lippmann-Schwinger equation is being numerically discretized instead of being solved exactly, the choice of390

the reference material affects the convergence of the solution. This was also pointed out by Chaboche et al.391

[39] in their complete analysis of the capabilities of mean-field approaches.392

3For the linear-elastic examples, the self-consistent scheme finds C0 to be the same as the effective stiffness of the RUC
Cmacro. So, considering Cinput = Cmacro in the non self-consistent scheme of Box 2.1 would lead to the same convergence as
the self-consistent scheme (for linear elasticity only).
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Figure 4: Normalized transverse Young modulus (left) and Poisson’s ratio (right) as a function of the number of cluster in
phase 1 (matrix). The DNS results for the fiber-reinforced composite and amorphous material were obtained from finite element
analyses.

The predictive capabilities of the proposed method can be further assessed by considering the variation393

of the elastic properties at the online stage without redoing the offline stage. The interested reader is394

referred to Appendix B and Figure B.14, where new effective elastic properties of the RUC were reasonably395

well predicted even when using new combinations of elastic properties for the two phases of the material396

that differ from the ones used in the offline stage, equation (45). This shows the potential of applying397

the proposed method to microstructure-based property design of heterogeneous material system, such as398

nanostructured polymers [54].399

3.2. Two-dimensional nonlinear elasto-plastic materials400

Particularly relevant is the assessment of the predictive capabilities of the proposed model when capturing401

the nonlinear plastic behavior of the RUC under various loading conditions, as well as the computational cost402

(CPU time and memory) when compared to the DNS. First the influence of the self-consistent scheme on403

the plastic predictions is investigated considering the two hardening laws introduced previously: the piece-404

wise linear hardening, equation (47); and the power-law hardening, equation (48). Figure 5 presents the405

stress-strain results for the fiber-reinforced composite subjected to uniaxial tension for these two hardening406

laws of the matrix.407
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Figure 5: The effect of the self-consistent scheme on the plastic behavior of the fiber-reinforced material under piece-wise linear
hardening (left) and power-law nonlinear hardening (right) loading conditions.

As can be observed in the figure, although the error of the method when compared to DNS is reduced in408
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each case by increasing the number of clusters, the self-consistent scheme converges significantly faster for409

a desired level of accuracy. This is especially visible for the power-law nonlinear hardening. When plastic410

yielding happens in the heterogeneous material, the macroscopic tangent stiffness tensor starts decreasing411

when compared to the elastic case due to localized plasticity in the matrix, so that Cmatrix is no longer412

a good choice for the tangent stiffness C0 of the reference material. By consistently updating C0 with413

an approximate value of the effective stiffness of the RUC, see Box 2.2, the evolution of the local internal414

variables in each cluster is captured more accurately.415

Another point to be considered is the effect of the A-based clustering used during the offline stage,416

introduced in Section 2.2.1. As discussed in that section, the k-means clustering was done based on the417

strain concentration tensor A(x) at each data point, with the purpose of grouping the data points with418

similar mechanical behavior into one cluster. A more naive compression scheme would be to do the clustering419

purely based on the spatial coordinates x of the data points, i.e. grouping points by their spatial proximity420

instead of considering the similarity of mechanical behavior. This position-based clustering leads to a cluster421

map resembling a Voronoi diagram, as illustrated in Figure 6 (left) for 32 clusters in phase 1 for the fiber-422

reinforced composite. The reader is encouraged to compare this figure with Figure 3c) to see the difference423

in the clustering scheme for the same number of clusters but using the A-based clustering.424
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Figure 6: The effect of the raw data type on the clustering results (left), as well as the corresponding predictions on macroscopic
response (right), for the fiber-reinforced composite under uniaxial tension. The position-based clustering results with 32 clusters
are shown on the left.

On the right of Figure 6 the results of position-based clustering are compared to the A-based clustering.425

In this figure it is seen that the convergence using the position-based clusters is poor and the accuracy of426

the prediction does not change significantly even considering 256 clusters for phase 1. On the contrary, with427

the same number of clusters the predictions from A-based clustering reproduce the DNS almost exactly.428

Figure 7 includes the stress-strain curves for the fiber-reinforced composite and the amorphous material429

considering two different load cases, uniaxial tension and pure shear, using the self-consistent scheme. The430

number of clusters in phase 1 ranges from 1 to 256, and the results from DNS are also provided for compari-431

son. By looking at the plots, we can conclude that the proposed method is capable of capturing the nonlinear432

plastic behavior with significantly fewer degrees of freedom but with a small loss in accuracy. Furthermore,433

the refinement of the discretization by including more clusters clearly improves the predictions: a desirable434

characteristic allowing the analyst to choose between accuracy and efficiency.435

Figure 8 provides a comparison of the local fields obtained from DNS of the high-fidelity RUC and from436

the proposed self-consistent clustering analysis of a reduced RUC with 256 clusters for phase 1. The figures437

show that the new method is able to reproduce the equivalent plastic strain fields, although the localized438

regions are reproduced in a more diffuse manner leading to regions with lower strain concentrations. This439

is expected since by definition the goal of the proposed approach is to predict as accurately as possible the440

global (homogenized) mechanical response with the minimum amount of information possible. In order to441

improve the resolution at these regions, the total number of clusters could be increased or, more wisely, a442
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Figure 7: The predictions given by the proposed reduced order method with the self-consistent scheme for the fiber-reinforced
composite (left) and amorphous material (right) under uniaxial tension and pure shear conditions. The solid lines represent
the DNS results for comparison. Three different numbers of clusters in phase 1 were considered: k1 = 1 (dashes), k1 = 16
(dots) and k1 = 256 (dash-dots).

nonlinear mapping of the k-means clustering could be applied so that more clusters are assigned to regions443

needing higher resolution (the issue is finding these regions, since different loading conditions lead to different444

localization areas).445

(a) Reduced RUC for composite material (b) High-fidelity RUC for composite material

(c) Reduced RUC for amorphous material (d) High-fidelity RUC for amorphous material

Figure 8: Equivalent plastic strain fields obtained from the direct numerical simulation of the high-fidelity RUC and from the
self-consistent clustering analysis of the reduced RUC. Top row shows results for fiber-reinforced composite material, while
bottom row presents the results for the amorphous material
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Figure 9: The computational time of the reduced order method with the self-consistent scheme vs. the total number of clusters
k1 + k2. 25 incremental loading steps are considered. A typical DNS with mesh size 600× 600 takes 1420s.

Up to this point the computational cost reduction of the method was not quantified. Even though the446

reduction achieved in the number of degrees of freedom is obvious, the system of equations that is being solved447

uses an iterative approach and each equation involves the summation over every cluster. Therefore, there is448

a clear trade-off between the compression of information achieved by the clustering procedure and the actual449

solution of the Lippmann-Schwinger equations. Figure 9 shows a comparison of computation time between450

the proposed approach for different numbers of clusters and the DNS. The results are encouraging, especially451

considering that the DNS finite element analyses were performed using a commercial code (significantly452

optimized), while the proposed method was implemented in MATLAB. A typical two-dimensional DNS453

took about 1420s (≈ 24min) on one intel i7-3632 processor, while the online stage of the reduced order454

method with the self-consistent scheme (in MATLAB) took 4s for k1 = 16 and 75s for k1 = 256. For455

k1 ∈ [1, 512], the computational time is almost proportional to the number of clusters in the system, which456

indicates that the most time-consuming part is to update the internal variables locally at each cluster.457

Finally, the reduced order model was also validated against a complex loading path. Macro-strain458

constraints are applied on ε11 and γ12, while σ22 = 0. Thus, the loading state can be represented by459

(ε11, γ12). As shown in Figure 10a), there are three steps in the loading path and the material finally returns460

to the initial state (ε11 = 0, γ12 = 0). Due to plasticity, ε22 does not necessarily vanish at the final state,461

which means that the initial state with ε22 = 0 is not reproduced. The stress-strain curves σ11-vs-ε11 and462

σ12-vs-γ12 given by the reduced-order method and the DNS results are shown in Figure 10 b) and c). Once463

again good agreement is observed.464

3.3. Three-dimensional nonlinear elasto-plastic material465

The proposed method was also applied to 3D nonlinear elasto-plastic materials similar to the previously466

presented examples in 2D. First, a spherical-particle composite is considered with the phase 1 being the467

matrix (as before) and the number of matrix clusters being k1. The volume fraction of the particle phase468

(phase 2) was considered to be 20% and k2 = dk1/4e. All the material properties are the same as before469

(see equations (45), (46) and (47)). The mesh size of the finite element model considered as the DNS was470

64 × 64 × 64, and the illustration of the mesh in the inclusion phase (phase 2) is demonstrated in Figure471

11. The reader is reminded that when generating the raw data, the strain concentration tensor A(x) has472

36 independent components since this is a 3D RUC. Thus, the dimension of data becomes 36, and a linear473

increase in the running time of the k-means clustering occurs.474

The stress-strain curves given by the self-consistent clustering analysis of the reduced RUC and the DNS475

of the high-fidelity RUC results are plotted in Figure 11. Although the convergence rates of macroscopic476

mechanical properties with respect to the number of clusters in 3D is not as high as the ones in 2D, good477

accuracy can be achieved by assigning 256 clusters in phase 1 (320 in total) under both loading conditions.478

In terms of computational cost, a typical DNS with 64 × 64 × 64 mesh took 7.3 hours on 24 cores (in a479
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(b) Normal stress versus normal strain
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(c) Shear stress versus shear strain

Figure 10: Response of the reduced RUC for the fiber-reinforced composite material under the three step loading path shown
in (a): (0.00, 0.00) → (0.05, 0.00) → (−0.05, 0.05) → (0.00, 0.00). The σ11-vs-ε11 response is shown in (b), and the σ12-vs-ε12
response is presented in (c).
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Figure 11: The 64 × 64 × 64 FE mesh of the 3D material displayed in the inclusion phase (phase 2) and stress-strain curves
under uniaxial tension and pure shear loading conditions. The solid lines represent the DNS results for comparison. Three
different numbers of clusters in phase 1 were considered: k1 = 1 (dashes), k1 = 16 (dots) and k1 = 256 (dash-dots).

state-of-the art high performance computing cluster with the following compute nodes: Intel Haswell E5-480

2680v3 2.5GHz 12-cores). The reduced order method (in MATLAB) took 5s and 214s on one intel i7-3632481
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Figure 12: The 80× 80× 80 FE mesh of the 3D amorphous material and stress-strain curves under uniaxial tension and pure
shear loading conditions. The solid lines represent the DNS results for comparison. Three different numbers of clusters in phase
1 were considered: k1 = 1 (dashes), k1 = 16 (dots) and k1 = 256 (dash-dots).

processor for k1 = 16 and k1 = 256, respectively. A more refined finite element mesh was used for the same482

microstructure, 80× 80× 80, and the differences in the stress-strain curves were less than 1% for both DNS483

and reduced order methods, indicating good convergence. For this case the DNS takes approximately 25.7484

hours on the same 24 cores, while the reduced model computation time is the same (it only depends on the485

number of clusters).486

The final example chosen to present in this work is a 3D two-phase amorphous material obtained by487

solving the Cahn-Hilliard equation in 3D. The illustration of the 3D microstructure is shown in Figure 12488

and the finite element mesh considered for the DNS was 80 × 80 × 80. The volume fraction of each phase489

was defined as 50%, so k2 = k1 in the clustering step. The stress-strain curves in Figure 12 show that the490

predictions given by the reduced order method converge slower than all the previous examples considered:491

this is attributed to the complexity of microstructure in the 3D amorphous material that leads to fewer492

similarities in the local stress/strain field, implying the need to use more clusters in order to characterize493

the nonlinear behavior appropriately.494

4. Conclusion495

A new computational approach was introduced for modeling the behavior of heterogeneous materials with496

complex microstructure. The proposed method includes two major contributions: 1) a data-compression497

procedure to improve the offline stage based on k-means clustering to group material subdomains with similar498

mechanical behavior; and 2) a new analysis method termed “self-consistent clustering analysis” derived via499

the homogeniation of each material subdomain (material cluster) through the Lippmann-Schwinger equation.500

The combination of the data compression achieved at the offline stage and the new scheme for solving the501

Lippmann-Schwinger equation without additional parameters or constitutive laws was shown to lead to a502

methodology with several attractive features: accurate, good convergence under refinement, computationally503

efficient, and involving a minimum amount of effort for both the offline and online stages. The offline stage is504

trivial since it only involves linear elastic simulations under 3 loading conditions for two-dimensional cases,505

or 6 loading conditions for three-dimensional ones.506

As a final note, the proposed method is believed to have a wide range of applications to various material507

systems. Multifunctional and multiphysics material systems such as piezoelectric and thermomechanical508

materials may be interesting future applications. The particular case of nonlinear materials with strain509

softening or damage requires special attention, since the effective modulus becomes negative in the softening510

region and the current fix-point method for solving the self-consistent reference material needs to be modified511
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to improve convergence. A possible way is to work with the total form of the Lippmann-Schwinger equation512

instead of the incremental form, i.e. with σ(x) and ε(x) as variables.513

Acknowledgement514

Z.L., M.A.B and W.K.L. warmly thank the support from AFOSR grant No. FA9550-14-1-0032. Z.L.515

would like to thank Prof. Wei Chen and Stephen Lin for their parts in helpful discussions. M.A.B. would516

like to acknowledge support from the Portuguese National Science Foundation and the Fulbright Program,517

and to thank Prof. Jacob Fish and Dr. Brendan Abberton for their parts in helpful discussions.518

Appendix A. Calculation and clustering of A519

In order to generate the database with the strain concentration tensors A(x), we implemented the DNS520

method based on fast Frourier transforms [19], which iteratively solves the full Lippmann-Schwinger equation521

with periodic boundary conditions. The finite element method could also be used to calculate A(x). As522

mentioned in Section 2.2.1, three orthogonal loading conditions are needed for a 2D material. In Voigt523

notation {εmacro} = [εmacro
11 , εmacro

22 , γmacro
12 ], the loading conditions in terms of the macroscopic strain are524

listed as [1, 0, 0], [0, 1, 0] and [0, 0, 1]. For instance, component A11, A21 and A31 are obtained under condition525

{εmacro} = [1, 0, 0].526

In this paper, we use the standard algorithm (Lloyd’s algorithm) [48] to solve the k-means clustering527

problem. The standard algorithm is essentially an optimization process of minimizing the within-cluster528

least squares sum,529

S = argmin
S′

k∑
J=1

∑
n∈SJ

||An − ĀJ ||2, (A.1)

where An is the strain concentration tensor of the n-th data point in Voigt notation, and ĀJ is the mean530

of all the strain concentration tensors at the points within the cluster SJ .531

At the initialization step, k data points are randomly selected from the data set and served as the initial532

means (Forgy method [55]). Then the algorithm iterates between the following two steps,533

1. Assignment step: Each data point is assigned to the cluster whose mean is nearest to the data point.534

In other words, within the t-th iteration, ∀{An} ∈ S(t)
I , we have535

||{An} − Ā
(t)
I ||2 6 ||{An} − Ā

(t)
J ||2 ∀J, J 6= I (A.2)

2. Update step: The mean values of the data points in the new cluster are recalculated for iteration t+1,536

537

Ā
(t)
I =

1

N
(t)
I

∑
{An}∈S(t)

I

{An} (A.3)

where N
(t)
i is the number of data points in cluster S

(t)
I .538

When the assignment of data points no longer changes, the algorithm is said to converge to a local optimum.539

However, the global optimum is not guaranteed in the optimization process. Therefore, k-means clustering540

is always performed with multiple replications in real application in order to overcome the local barrier.541

Appendix B. Different elastic properties in the online stage without redoing the offline stage542

The proposed approach predicts new effective elastic properties of the RUC when considering new elastic543

properties for each phase of the material with the same microstructure, even when considering the same544

selection of elastic properties in the offline stage, equation (45).545
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Several simulations in the online stage were conducted using different Young’s modulus of phase 2 (E2546

was varied from 1 to 5000MPa), while keeping the Young’s modulus of phase 1 at 100 MPa. The Young’s547

moduli ratio between phase 2 and phase 1 ranged from 0.01 to 50. The DNS results obtained for this range548

are provided in Figure B.13, where the microstructural effect on the overall material behavior is clear. Note549

that since phase 2 in the fiber-reinforced composite is discontinuous (fibers are separated), the effect of550

varying its modulus E2 is less pronounced and the overall properties are mainly determined by the matrix551

material. On the other hand, the overall modulus keeps increasing with E2 in the amorphous material,552

where phases 1 and 2 are irregular and similar to each other.553
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Figure B.13: Equivalent transverse Young modulus EDNS of the RUC obtained from DNS as a function of the Young’s modulus
of phase 2.

Figure B.14 shows the results from the proposed method with and without the self-consistent scheme.554

Once again the improvement from the self-consistent scheme is evident, where the transverse Young’s modu-555

lus is close to the DNS values for a significant range of ratios (0.01−50). Without the self-consistent scheme,556

especially for the amorphous material, there is a tendency to overestimate or underestimate the modulus at557

extreme cases even using a large number of clusters, indicating that phase 1 is no longer a good candidate558

for the reference material.559

1 10 100 1000 10000
Young's modulus of phase 2: E

2
 (MPa)

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 m
od

ul
us

 E
/E

D
N

S

Fiber-reinforced composite

 k
1
=32,   with SC

 k
1
=256, with SC

 k
1
=32,   w/o SC

 k
1
=256, w/o SC

 DNS reference

1 10 100 1000 10000
Young's modulus of phase 2: E

2
 (MPa)

0.50

1.00

1.50

2.00

2.50

3.00

3.50

N
or

m
al

iz
ed

 m
od

ul
us

 E
/E

D
N

S

Amorphous material

 k
1
=32,   with SC

 k
1
=256, with SC

 k
1
=32,   w/o SC

 k
1
=256, w/o SC

 DNS reference

Figure B.14: The effects of phase 2 Young’s modulus E2 on the overall normalized equivalent transverse Young’s modulus
for the fiber-reinforced material (left) and amorphous material (right). Results from k1 = 32 and 256 are provided with and
without the self-consistent scheme (SC).

These results demonstrate that reasonable elastic predictions are possible even without going through560
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the offline process for new combinations of elastic properties. Nevertheless, in practice the offline stage of561

the proposed method is so simple (three loading conditions in 2D, and six in 3D) that avoiding it is usually562

not worthwhile.563
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