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Abstract

Multiscale modeling of heterogeneous material undergoing strain softening poses computational chal-
lenges for localization of the microstructure, material instability in the macrostructure, and the computa-
tional requirement for accurate and efficient concurrent calculation. In the paper, a stable micro-damage
homogenization algorithm is presented which removes the material instability issues in the microstructure
with representative volume elements (RVE) that are not sensitive to size when computing the homogenized
stress-strain response.

The proposed concurrent simulation framework allows the computation of the macroscopic response
to explicitly consider the behavior of the separate constituents (material phases), as well as the complex
microstructural morphology. A non-local material length parameter is introduced in the macroscale model,
which will control the width of the damage bands and prevent material instability.

The self-consistent clustering analysis (SCA) recently proposed by Liu et al. (2016) provides an effective
way of developing a microstructural database based on a clustering algorithm and the Lippmann-Schwinger
integral equation, which enables an efficient and accurate prediction of nonlinear material response. The self-
consistent clustering analysis is further generalized to consider complex loading paths through the projection
of the effective stiffness tensor. In the concurrent simulation, the predicted macroscale strain localization is
observed to be sensitive to the combination of microscale constituents, showing the unique capability of the
SCA microstructural database for complex material simulations.

Keywords: multi-scale damage models, microstructural database, data compression, model reduction,
self-consistent scheme, concurrent simulation

1. Introduction

Multiscale simulation methods present significant advantages for computational mechanics due to their
ability to analyze macroscopic structural performance while considering the effects of microscopic hetero-
geneities. While great strides have been made, some core challenges still face multiscale methods, including
accurate methods for homogenizing the microstructural representative volume element (RVE) undergoing
strain localization, computation of strain localization with variable-sized microstructural features, and the
ability to conduct efficient concurrent simulations.

1.1. Core Challenge 1: Homogenization with localization

The presence of voids and inclusions in a material will result in a non-uniform stress and strain field
at the microstructural scale (see Fig. 1). Continued straining will result in nucleation and coalescence
of microstructural voids in a ductile material, leading to shear banding, localization, and fracture [1] .
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The resolution required to numerically predict the onset and development of these phenomena exceeds
the available computational resources. The concurrent multiscale methods of McVeigh, Vernerey, and Liu
[2] have shown promise for addressing this class of problems through the use of representative volume
elements (RVEs) to compute material behavior at the microstructure. The microstructure RVE can be
coupled with macroscopic finite element models to predict overall structural behavior which accounts for
the microstructural character.

Strain softening due to localization poses computational challenges at the microscopic levels for concur-
rent multiscale methods. Direct application of a material damage model in the microstructure results in
non-physical results due to material instability. To date, multiscale modeling coupled with material damage
is still not well explored [3]. Most multiscale methods require an additional microscale material length
parameter to regularize the ill-posed boundary value problem in the microscale RVE. However, the relation-
ship between the macroscale and microscale length parameters is usually not physically justified and it is
arguable that the microscale RVE model actually does not provide any information on how to determine
the macroscale material length parameter. Instead, it merely moves the continuum localization problem one
scale down [4]. Even if the microscale RVE model is regularized by a length parameter without justifying
its physical basis, the homogenization problem with the localization effect is still not well defined. In the
strain-softening region, the overall homogenized stress-strain response strongly depends on the size of the
RVE, which is actually contradictory to the definition of an RVE. Unfortunately, this issue is very often not
acknowledged in the literature for multiscale homogenization with strain-softening and localization effects.

In Section 2, a novel micro-damage algorithm is proposed that alleviates the material instability at the
microstructural level. The homogenized behavior in the strain softening region is not sensitive to the RVE
size.

𝐹, Δ
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Damage band

Figure 1: Illustration of the RVE microstructural stress effects of inclusions in the material microstructure (left) during
localization of a macroscale model (right).

1.2. Core Challenge 2: Macroscopic non-local damage model for strain localization

Material damage models [5] can be used to model material localization and failure while accounting
for the heterogeneous effects of microscale inclusions (see Fig. 1). However, modeling material damage
and localization with continuum damage methods poses stability challenges because the damaged region of
the material will always localize to a single layer of elements. Further mesh refinement results in thinner
localization bands and reduced energy dissipation due to the material damage, which is contrary to the
physical energy dissipation of localization. This challenge occurs due to the local material strain-softening
effect, in which the tangential stiffness matrix is no longer positive definite, leading to an imaginary wave
speed. As such, the boundary value problem becomes ill-posed, and the continuum form of the equilibrium
condition becomes unstable. Thus, the numerical solution loses objectivity with respect to the mesh choice,
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and exhibits spurious mesh sensitivity. Several methods have been proposed to resolve this mesh-dependence
problem due to the strain-softening effect, such as non-local damage model [6], micromorphic continuum
[2, 7, 1, 8, 9], phase-field fracture [10, 11], crack band theory [12] and eigen-erosion method [13]. Among all
these methods, a material length parameter or the material fracture energy, Gf (energy per unit area), are
introduced to regularize the original ill-posed boundary value problem. For example, in phase-field model
for quasi-brittle fracture [10], Gf is defined as a material constant measured from experiment, which limits
the energy dissipation per unite area in the crack. Meanwhile, the material length parameter helps to diffuse
the fracture singularity over a finite damaged region, making it numerically solvable. In non-local damage
models [6], the material length parameter is introduced to spread the damaged region over a finite domain,
which allows the objectivity of the numerical solution to be recovered. This material length parameter
is either empirically-derived based on microstructural information (e.g. material characteristic length), or
experimentally calibrated using fracture energy or size-effect testing results.

In Section 3, a non-local macroscopic damage model is introduced which couples the homogenized stress
from the microstructural RVE with a macroscopic characteristic length and a weighting function. This
method alleviates the material instability in the macroscopic model due to material damage.

1.3. Core Challenge 3: Efficient concurrent simulations

Accurate and efficient computational methods for predicting fracture and damage of engineering materi-
als are essential to design and failure analysis of materials with non-uniform or heterogeneous microstructural
properties. Successful material models need to capture the non-trivial inter-dependence between material
constituents at small scales that lead to dramatic performance effects in the macro-scale response. Mech-
anistic understanding of this structure-property relation across material length scales will also enable the
development of material microstructural database, which will accelerate material design and manufacturing
[14, 15]. This structure-property feedback loop enables the design of new material systems with new capa-
bilities. In mathematical physics, structure is interpreted as the non-local interaction of the microstructural
clusters, and property is interpreted as the virtual work at the corresponding material point. Computa-
tional design of experiments and data mining techniques offer the ability to discover the influence of the
microstructure on the macroscopic material behavior.

Linking the microstructural character to the macroscopic inelastic behavior is an ongoing challenge and
the subject of continued research. One area of particular interest is material fracture and failure analysis.
This is typically accomplished by using fracture mechanics or continuum damage mechanics, which are
macroscopic methods that are not sensitive to the material microstructure and require extensive testing and
model calibration for new materials [5, 16, 17, 18, 19]. Concurrent multiscale methods [20, 21, 22, 23, 24, 25,
26, 27] attempt to avoid the closed-form constitutive laws and the calibration process by directly establishing
the connection between the microstructure and the macro-response of materials. These methods link every
macroscale integration or material point to a representative microscopic material domain, which is solved
by the microscale equilibrium condition. Following homogenization, the microscale model can provide the
macroscale stress-strain responses during the analysis. The integration of microstructure reconstruction
and high-fidelity multiscale predictions of the materials behavior leads to the generation of vast amounts of
reliable data [28]

A drawback of multiscale methods is the computational expense required to accurately assess the stress-
strain behavior of the microstructural RVE. On one hand, analytical approaches, such as rules of mixtures
and theoretical micromechanics methods [29, 30, 31, 32, 33], are efficient, but lose accuracy for irregular
morphologies and nonlinear history-dependent properties. In contrast, direct numerical simulations (DNS),
such as finite element method (FEM) [34, 20] and fast Fourier transform (FFT)-based method [35], offer
high accuracy at the expense of prohibitive computational costs. Because of this, they are not applicable to
concurrent simulations and material design. Data-driven reduced order modeling has been introduced for
predicting the effective mechanical properties in a manner that balances computational cost and accuracy.
These methods extract patterns of material behavior from a priori simulations, which expedite the calcula-
tions in the prediction stage. For heterogeneous hyperelastic materials, various data-driven approaches have
been proposed to construct the overall energy surface of the RVE [28, 36, 37, 38, 39]. For history-dependent
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plastic material, the model reduction procedure can be more complex. Two examples are non-uniform trans-
formation field analysis (NTFA) [40, 41, 42] and variants of the principle component analysis [43, 44, 45]
or proper orthogonal decomposition (POD) [46, 47, 48]. In [42], Michel and Suquet enhanced the NTFA
with the reduced evolution equations (or coarse dynamics), and applied it to the homogenization of elasto-
viscoplastic materials. Oliver et al. [48] used POD to find a low-dimensional space of the displacement
fluctuations and fitted the reduced order model into a concurrent multiscale fracture problem [48]. However,
both NTFA and POD methods require extensive a priori simulations for interpolating nonlinear inelastic
material behaviors, and the offline stages need to be recomputed for different combinations of material
constituents.

High-fidelity RVE
(DNS)

Offline or training stage (SCA) Reduced Order Model 
(material database)

16 clusters (matrix)

Online or predictive stage (SCA)
Self-consistent clustering analysis based on
Lippman-Schwinger equation. 

Validation

Domain decomposition (k-means clustering) 
for finding material clusters.

Figure 2: Flowchart summarizing the self-consistent clustering analysis (SCA) for model reduction. Clusters in the inclusion
phase are not shown.

Recently, the self-consistent clustering analysis (SCA) of Liu et al. [49] has been shown to greatly reduce
computational expense through the use of novel data mining techniques based on clustering. This method
uses RVE clustering techniques (see Fig. 2) to creates a microstructural database from the high-fidelity
simulation data in an offline training stage, and homogenizes the reduced system based on a self-consistent
scheme in the online predicting stage. With only linear elastic simulations in the offline stage, SCA has
demonstrated a powerful trade-off between accuracy and efficiency in predicting elasto-plastic behavior
with no strain softening [49]. SCA has also been shown to accelerate material behavior predictions (e.g.
toughness) within a computational data-driven framework of material design under uncertainty [28].

1.4. Outline of the paper

The paper first introduces a new micro-damage homogenization algorithm in Section 2 and a non-local
macroscopic damage model in Section 3. Section 4 presents the Lippmann-Schwinger equation for the self-
consistent clustering analysis (SCA) online stage with a new self-consistent scheme based on projection
of the effective stiffness tensor. This ensures the convergence of the self-consistent scheme under complex
loading paths within a concurrent simulation. In Section 5, the microscale material laws are defined and the
homogenized stress-strain response of the RVE is investigated. The accuracy and efficiency of the proposed
method are validated against direct numerical simulation (DNS). In Section 6, concurrent simulations of
a multiscale localization problem are performed, enabled by the SCA method. With the same SCA mi-
crostructural database, different macroscale localization patterns can be observed for different combinations
of microscale constituents.

2. Multiscale damage model with a micro-damage algorithm

2.1. Mechanics

Material fracture is sensitive to the microstructure and evaluating these effects requires a multiscale
modeling approach which incorporates these details. A material’s microstructure can consist of voids or
inclusions which will lead to a non-uniform stress and strain state in the microstructure. Multiscale mod-
eling couples the microstructural stress state with the macroscopic calculation to capture the effects of the
microstructure in a macroscopic calculation.
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The virtual internal work density at a macroscopic material point can be written as

δW int = σM : δεM =
1

|Ω|

∫
Ω

σm : δεmdΩ, (1)

where |Ω| is the volume of the microstructural RVE, and σm and δεm are the microstructural stress and
virtual strain, respectively. The macroscopic stress σM and macroscopic virtual strain δεM can be computed
using the Hill-Mandel Lemma to integrate these quantities over the microstructural RVE as

σM =
1

|Ω|

∫
Ω

σmdΩ and δεM =
1

|Ω|

∫
Ω

δεmdΩ. (2)

In this paper, the subscript m represents the microscopic quantities, and the subscript M represents the
macroscopic homogenized quantities.

For an elasto-plastic material, the constitutive law in the microstructure can be written as

σm = Cm : εelm = Cm :
(
εm − εplm

)
(3)

where Cm is the microscopic elastic stiffness tensor, and εelm and εplm are the microscopic elastic strain and
plastic strain, respectively. The total strain εm at a point within the microstructure is given by

εm =

∫
Ω

dεm (4)

where dεm is the microstructural strain increment due to an associated macroscopic strain increment dεM ,
applied as boundary conditions on the microstructural RVE. According to the Hill-Mandel lemma, the ho-
mogenized stress σM can be computed by averaging the microstructural stress σm in the RVE. Through
this homogenization process, the mechanical response at each macro material/integration point is coupled
with a microscale RVE model. Meanwhile, the computed microscopic history-dependent internal variables
are stored in the RVE for continued analysis. This concurrent framework is advantageous since the constitu-
tive law can be adjusted on the fly based on the microstructural characteristics. The multiscale framework
obviates the need for a cumbersome equation-based phenomenological constitutive law to account for the
behavior of history-dependent material with complex micro-morphologies and nonlinear behavior such as
plasticity.

2.2. Strain softening and damage

The homogenization scheme introduced in Section 2.1 may encounter stability problems when the mate-
rial experiences strain-softening, such as material failure described by a progressive damage model. For an
elastoplastic material with damage, the damaged microstructural stress can be written as

σdm = (1− dm)Cm : εelm = (1− dm)Cm :
(
εm − εplm

)
, (5)

where dm is a non-decreasing scalar damage parameter describing the irreversible isotropic damage process.
Anisotropic damage can also be considered, but the scalar damage parameter needs to be replaced by a
tensor. This damage parameter acts on the stress of a reference elastoplastic material,

σ0
m = Cm : εelm = Cm :

(
εm − εplm

)
, (6)

which gives
σdm = (1− dm)σ0

m. (7)

This reference elastoplastic material stores the history-dependent state variables and provides the relation-
ship between the elastic strain εelm and plastic strain εplm. The damage parameter can be written as a function
of state variables qm (e.g. the effective plastic strain ),

dm = dm(qm). (8)

5



The progressive damage model directly applied to the microstructural RVE suffers from material insta-
bility due to non-physical strain softening, leading to results in which the localization occurs in very narrow
bands of elements. Since no regularization is introduced in this example, the width of the band depends
on the mesh size. Even if the microscale RVE is regularized with a physical band width, the homogenized
macroscopic stress-strain response still strongly depends on the RVE size, so that it cannot represent the
material behavior at local macroscopic material point.

2.3. Stabilized micro-damage algorithm

A micro-damage stabilization algorithm is proposed which removes the material strain softening instabil-
ity associated with traditional damage models. This is accomplished by introducing a reference elastoplastic
RVE and decoupling the damage from the plastic evolution. The effective macroscopic material law with
damage is written as

σdM = Cd
M : εelM = Cd

M :
(
εM − εplM

)
, (9)

where σdM is the macroscopic stress of the damaged RVE, and Cd
M is the macroscopic effective elastic

stiffness tensor of the damaged RVE. Moreover, εelM and εplM are the macroscopic effective elastic strain and
plastic strain, respectively. The effective material law of the reference elasto-plastic RVE can be written as

σ0
M = CM : εelM = CM :

(
εM − εplM

)
, (10)

where σ0
M is the macroscopic stress of the undamaged reference RVE, whose effective elastic stiffness tensor

is denoted by CM . Assuming the damaged elastoplastic RVE has the same macroscopic effective elastic
strain (or effective plastic strain), the following relationship between σdM and σ0

M exists

σdM = Cd
M :

[
(CM )

−1
: σ0

M

]
. (11)

In a general multi-dimensional heterogeneous material, the macroscopic effective plastic strain εplM is not nec-
essarily a volume average of the microscopic plastic strain εplm. According to the definition of the macroscopic

material law in Eq. (10), σ0
M should vanish if εM coincides with εplM

σ0
M = 0, if εM = εplM (or εelM = 0). (12)

The stabilized micro-damage algorithm computes the effective macroscopic quantities in Eq. (9) and (10),
as illustrated in Fig. 3.

𝛔"# 	

𝛔"𝟎 	

𝛆"'(

σ

𝜀

Figure 3: Illustration of the micro-damage algorithm on the macroscopic stress-strain curve

A strain increment at a macroscopic material point is passed to the reference elasto-plastic RVE as a
homogenized strain increment, dεM , and applied as a boundary condition. The microscopic material law in
the RVE is

σm1 = Cm :
(
εm1 − εplm

)
. (13)
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The microstructural stress and total strain are computed and the microstructural stress is homogenized
using the Hill-Mandel lemma to obtain the macroscopic stress

σ0
M =

1

|Ω|

∫
Ω

σm1dΩ. (14)

The macroscopic effective elastic strain εelM (or plastic strain εplM ) is then separated from the total strain.
According to Eq. (10), the effective macroscopic elastic strain can be expressed as

εelM = (CM )
−1

: σ0
M . (15)

This is equivalent to applying the homogenized stress from the reference RVE, σ0
M , to a second RVE which

is identical to the first RVE, except that the material is an undamaged elastic material,

σm2 = Cm : εm2. (16)

The microstructural strain in the second RVE is computed and homogenized to yield the macroscopic elastic
strain as

εelM =
1

|Ω|

∫
Ω

εm2dΩ. (17)

Finally, the macroscopic stress of the damaged material can be computed based on Eq. (9)

σdM = Cd
M : εelM . (18)

This is equivalent to applying the homogenized strain from the second RVE, εelM , to a third RVE with
damaged elastic material properties,

σm3 = (1− dm)Cm : εm3, (19)

where the microscopic damage parameter, dm, is a function of the state variables, qm1, in the first RVE or
the reference elasto-plastic RVE,

dm = dm(qm1). (20)

The microscopic stress in the third RVE is computed and homogenized as

σdM =
1

|Ω|

∫
Ω

σm3dΩ. (21)

The homogenized stress, σdM , is returned to the macroscale model as the damaged macroscopic stress at the
material point corresponding to the macroscopic strain.

2.4. Effective damage parameter

To characterize the damage state of the RVE, an effective macroscopic damage parameter, dM , can be
defined as

dM = 1− ||σ
d
M : σ0

M ||
||σ0

M : σ0
M ||

(22)

The macroscale homogenized material and the associated RVE are said to be fully damaged when dM = 1.
Note that the effective damage parameter is not defined as the field average of the local damage parameter, so
full damage can be achieved even if only part of the RVE is fully damaged. The effective damage parameter
is a natural by-product of the homogenization scheme and does not affect the stress-strain relation, but it
does provide a useful state variable/indicator for tracking localization in the macroscale simulation.
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3. Non-local macroscopic damage

A non-local macroscale damage model is adopted to deal with the pathological mesh dependence due to
strain softening. The macroscopic damage is based on the microscale damage computed using the proposed
micro-damage algorithm from Section 2.3. The algorithm captures the complex damage mechanisms due
to material heterogeneities at the microstructural level without predefining the form or requiring a length
scale. This is achieved at a local macroscopic point by homogenizing the damaged stress computed in
the microscale RVE. Although the microscale damage model does not require a non-local length scale, the
macroscale model is still subject to the pathological mesh dependence when the homogenized results from
the RVE are passed back to the macroscale material point.

A non-local macroscopic length scale is introduced via a convolution integral. The non-local microscale
damage parameter, d̃m, at point x inside the RVE is obtained as a weighted average over a spatial neigh-
borhood of the macroscale point ξ under consideration,

d̃m(x, ξ) =

∫
B

ω(||ξ − ξ′||)dm(x, ξ′)dξ′, (23)

where dm(x, ξ′) is the local damage increment at a microscale point x inside the RVE associated with
macroscale point ξ′. Note that the non-local regularization can also be performed on other variables, such
as strain, stress and effective plastic strain.

The clustering domain decomposition utilized for the reduced order SCA method in Section 4 leads to a
discrete form of the convolution integral. The non-local damage parameter in the I-th cluster d̃Im at point
ξ of a reduced order RVE can be written as

d̃Im(ξ) =

∫
B

ω(||ξ − ξ′||)dIm(ξ′)dξ′, (24)

where dIm(ξ′) is the local damage parameter in the I-th cluster of the reduced RVE at point ξ′.
The non-local weighting function ω(||ξ − ξ′||) is normalized to preserve a uniform field,

ω(||ξ − ξ′||) =
ω∞(||ξ − ξ′||)∫

B
ω∞

(
||ξ − ξ′||

)
dξ′

, (25)

where B denotes the macroscale support domain for the non-local integration. One possible weighting
function, which is utilized for the examples in this paper, is a polynomial bell function with compact
support [6],

ω∞(r) =

〈
1− 4r2

l20

〉2

, (26)

where the Macauley brackets 〈...〉 are defined as 〈x〉 = max(x, 0), and l0 is the macroscale length scale
parameter. Since ω∞(r) vanishes for r > l0/2, the support domain B is circular in two-dimensions, or
spherical in three-dimensions, with a radius l0/2.

The macroscale length parameter, l0, determines the width of the damage localization band, and limits
localization to ensure numerical convergence to a physically meaningful solution. The non-local microscale
damage parameter d̃m (or d̃Im) is utilized in the third RVE (see the definition in Section 2.3), resulting in a
microscale stress-strain relation in Eq. (19) of

σm3 = (1− d̃m)Cm : εm3. (27)

For the new micro-damage homogenization method with the non-local formulation, the non-local microscale
damage parameter d̃m is computed in Step 2.c in Box I, and d̃m will affect on the macroscale material
responses through homogenization of the RVE stress.

The macroscale length parameter l0 can be determined by measuring the width of the strain localization
band, either in high-fidelity direct numerical simulations (DNS) which model the damage evolution process
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explicitly [7, 8, 1], or by experimental image post-processing using digital image correlation (DIC) analysis
[50]. For a given weighting function defined by l0, the mesh size le of the macroscale model (e.g. FEM)
needs to be small enough to effectively remove the mesh sensitivity and reduce the error caused by sample
aliasing [51, 52]. In this paper, le < l0/4 is used, and the influence of mesh size will also be investigated in
Section 6.1.

4. Self-consistent clustering analysis: model reduction

The concurrent multiscale modeling framework for the micro-damage algorithm is applicable to complex
materials, but additional computational resources are needed to solve the microscale model at each integra-
tion point. As a result, the whole concurrent simulation is prohibitively expensive for complex microscale
representation.

The self-consistent clustering analysis (SCA) with a new projection-based self-consistent scheme is pro-
posed to increase the efficiency of the concurrent calculations. The efficiency of SCA is achieved via data
compression algorithms which group local microstructures into clusters during an offline training stage.
Grouping material points with similar mechanical behavior into clusters results in significantly fewer degrees
of freedom than the original DNS; the computational speed is thus greatly improved. The self-consistent
scheme introduced in the online stage of SCA guarantees the accuracy of the reduced order model. Impor-
tantly, SCA is valid for any local nonlinear constitutive law (such as plasticity and damage) of each material
phase in the microscale model.

4.1. Offline stage: mechanistic material characterization

Grouping material points with similar mechanical behavior into a single cluster is performed by domain
decomposition of the material points using the clustering methods [53]. First, the similarity between two
material points is measured by the strain concentration tensor Am(x), which is defined as

εm(x) = Am(x) : εM in Ω, (28)

where εM is the elastic macroscopic strain corresponding to the boundary conditions on the RVE, and εm(x)
is the elastic local strain at point x in the microscale RVE domain Ω. In a two-dimensional (2D) model,
Am(x) has 9 independent components, which can be determined by a set of elastic DNS calculations under
3 orthogonal loading conditions. For a linear elastic material, the strain concentration tensor is independent
of the loading conditions. Other metrics, such as effective plastic strain and damage parameter, can also be
selected for the offline data clustering, but may require extra computation in the offline stage.

After computing the strain concentration tensor Am(x), the k-means clustering method [54] is used to
group data points. Additional details about the clustering algorithm are provided in Appendix A. Since
all the material points in a cluster are assumed to have the same mechanical responses, the number of the
degrees of freedom is significantly reduced through this compression/clustering step. The k-means clustering
results of a 2D heterogeneous RVE in the matrix phase and inclusion phase at two levels of resolution are
provided in Fig. 4.

A primary assumption associated with the domain decomposition is that any local variable β(x) is
uniform within each cluster. Globally, this is equivalent to having a piece-wise uniform profile of the
variable in the RVE. This piecewise uniform approximation enables us to reduce the number of degrees of
freedom for the Lippmann-Schwinger equation, which is solved in the following online stage (see Section 4.2).
Meanwhile, the so-called interaction tensor DIJ can also be extracted as an invariant inside the reduced
Lippmann-Schwinger equation. Details on computing the interaction tensors are provided in Appendix B.

It should be noted that although the domain decomposition is based on a specific selection of elastic
properties for each material phase in the offline stage, the same database can be used for predicting responses
for new combinations of material constituents in the online stage. Even though the absolute value of the
strain concentration tensor Am(x) strongly depends on the phase properties, the clustering results are more
sensitive to the distribution of Am(x) in the RVE, which characterizes the geometrical heterogeneity. In
this paper, the same database shown in Fig. 4 is used for predicting the responses of two different RVEs
embedded with hard or soft inclusions.
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Matrix phase (𝑘#)

Inclusion phase (𝑘%)

𝑘# = 16 𝑘# = 256

𝑘% = 8 𝑘% = 128

Figure 4: K-means clustering results of the cross-section of a two-dimensional RVE with circular inclusions. The high-fidelity
RVE is discretized by a 1200× 1200 mesh. Each cluster contains all the separate sub-domains with the same color.

4.2. Online stage: a new projection-based self-consistent scheme

As discussed in [49], the equilibrium condition in the RVE can be rewritten as a continuous Lippmann-
Schwinger integral equation by introducing a homogeneous isotropic linear elastic reference material,

∆εm(x) +

∫
Ω

Φ0(x,x′) :
[
∆σm(x′)−C0 : ∆εm(x′)

]
dx′ −∆ε0 = 0, (29)

where ∆ε0 is the far-field strain increment controlling the evolution of the local strain. The far-field strain
is uniform in the RVE. The reference material is isotropic linear elastic, and its stiffness tensor C0 can be
determined by two independent Lamé parameters λ0 and µ0,

C0 = f(λ0, µ0) = λ0I⊗ I + µ0II, (30)

where I is the second-rank identity tensor, and II is the symmetric part of the fourth-rank identity tensor.
Moreover, ∆εm(x) and ∆σm(x) are the microscopic strain and stress increments respectively. Averaging
the incremental integral equation in Eq. (29) in Ω leads to

1

| Ω |

∫
Ω

∆εm(x)dx +
1

| Ω |

∫
Ω

[∫
Ω

Φ0(x,x′)dx

]
:
[
∆σm(x′)−C0 : ∆εm(x′)

]
dx′ −∆ε0 = 0. (31)

Using the boundary conditions for deriving the Green’s function, Eq. (B.5) can be equivalently written in
the spatial domain as ∫

Ω

Φ0(x,x′)dx = 0. (32)

Substituting Eq. (32) into (31) gives

∆ε0 =
1

| Ω |

∫
Ω

∆εm(x)dx, (33)

which indicates that the far-field strain increment is always equal to the ensemble averaged strain increment
in the RVE. To compute the strain increment ∆εm(x) in the integral Eq. (29), constraints are needed from
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the macroscopic boundary conditions. For the homogenization scheme proposed in Section 2, two types of
constraints are used: 1) macro-strain constraints in RVEs 1 and 3

1

| Ω |

∫
Ω

∆εm(x)dx = ∆εM or ∆ε0 = ∆εM ; (34)

and 2) a macro-stress constraint in RVE 2

1

| Ω |

∫
Ω

σm(x)dx = σM . (35)

For more general cases, macro-stress and mixed constraints can also be formulated [49]. Here the bound-
ary conditions are applied as constraints on the volume averages of strain or stress inside the RVE. This
methodology differs from the standard finite element method in which the boundary conditions constrain
the displacement or force at the RVE boundaries.

As the full-field calculations (e.g. FFT-based method) of the continuous Lippmann-Schwinger equation
may require excessive computational resources, the discretization of the integral equation is performed based
on the domain decomposition in the offline stage. With the piecewise uniform assumption in Eq. (58), the
number of degrees of freedom and the number of the internal variables in the new system can be reduced.
After decomposition, the discretized integral equation of the I-th cluster can be derived as

∆εIm +

k∑
J=1

DIJ :
[
∆σJm −C0 : ∆εJm

]
−∆ε0 = 0, (36)

where ∆εJm and ∆σJm are the microscopic strain and stress increment in the J-th cluster. The interaction
tensor, DIJ , is defined in Eq. (B.1), and is related to the Green’s function of the reference material. After
the discretization, the far field strain is still equal to the average strain in the RVE,

∆ε0 =

k∑
I=1

cI∆εIm. (37)

where cI is the volume fraction of the I-th cluster. Meanwhile the macroscopic boundary conditions are also
required to be discretized. For instance, the discrete form of the macro-strain constraint can be written as

k∑
I=1

cI∆εIm = ∆εM or ∆ε0 = ∆εM . (38)

Similarly, the discretized macro-stress constraint becomes

k∑
I=1

cI∆σIm = ∆σM . (39)

An important feature of the continuous Lippmann-Schwinger in Eq. (29) is that its solution is indepen-
dent of the choice of the reference material C0. This can be explained by the fact that the physical problem
is fully described by the equilibrium condition and the prescribed macroscopic boundary conditions. How-
ever, once the equation is discretized based on the piecewise uniform assumption, the equilibrium condition
is not strictly satisfied at every point in the RVE, and the solution of the reduced system depends on the
choices of C0. This discrepancy can be reduced by increasing the number of clusters into the system, but
with a computational cost increase due to the increased degrees of freedom.

To achieve both efficiency and accuracy, a self-consistent scheme is used in the online stage which shows
good accuracy with fewer clusters. In the self-consistent scheme, the stiffness tensor of the reference material
C0 is set approximately the same as the homogenized stiffness tensor C̄,

C0 → C̄. (40)
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The homogenized stiffness tensor C̄ of the RVE can be expressed as

C̄ =

k∑
I=1

cICI
alg : AI

m, (41)

where CI
alg is the algorithm stiffness tensor of the material in the I-th cluster and is an output of the local

constitutive law for the current strain increment in the cluster,

CI
alg =

∂∆σIm
∂∆εIm

. (42)

The strain concentration tensor of the I-th cluster AI
m relates the local strain increment in the I-th cluster

∆εIm to the far-field strain increment ∆ε0,

∆εIm = AI
m : ∆ε0. (43)

The strain concentration tensor AI
m can be determined by first linearizing the discretized integral equation

(36) using CI
alg and then inverting the Jacobian matrix of the Newton’s method. Since C̄ is only required for

the self-consistent scheme, the calculation of C̄ is only performed once after the convergence of the Newton’s
method to save the computational cost.

Due to the nonlinearity of the material responses, such as plasticity, it is usually not possible to determine
an isotropic C0 which provides an exact match with C̄. In [49], the self-consistent scheme is formulated
as an optimization problem, where the optimum isotropic C0 minimizes the error between the predicted
average stress increments. Although this scheme does not require computing C̄ explicitly, it has mainly two
drawbacks. First, the optimization problem is under-determined under pure shear or hydrostatic loading
conditions, so that one of two independent elastic constants need to be estimated. More importantly, the
modulus of the optimum reference material may become negative under complex loading conditions, which
is deleterious to the convergence of the fixed-point method.

In this paper, a new self-consistent scheme is proposed based on projection of the effective stiffness
tensor C̄, which is formulated as two well-defined optimization problems. For a 2D plane strain problem,
the stiffness tensor of the isotropic reference material C0

pe is decomposed as

C0
iso = 2κ0J + 2µ0K, (44)

where the 2D bulk modulus can be related to the Lamé parameters,

κ0 = λ0 + µ0. (45)

The forth-rank tensor J and K are defined as

J =
1

2
(I⊗ I) and K = II− J, (46)

where I is the second-rank identity tensor, II is the fourth-rank symmetric identity tensor. It can be shown
that J and K are orthogonal to each other,

J :: K = 0, (47)

and
J :: J = 1, K :: K = 2, (48)

where “::” denotes the inner product between two fourth-order tensors, or A :: B = AijklBijkl.
To find the optimum κ0 and µ0 from the projection of the effective stiffness tensor C̄, two optimization

problems are defined
κ0 = argmin

{κ′}
||
[
C̄−Ciso(κ

′)
]

: ∆ε0
h||2 (49)
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and
µ0 = argmin

{µ′}
||
[
C̄−Ciso(µ

′)
]

: ∆ε0
d||2, (50)

where ∆ε0
h and ∆ε0

d are the hydrostatic and deviatoric parts of the far-field strain increment ∆ε0. By taking
the derivative of the cost functions in Eqs. (49) and (50) for finding the stationary points, the optimum κ0

and µ0 can be expressed in Voigt notation as

κ0 =
C̄11 + C̄12 + C̄21 + C̄22

4
(51)

and

µ0 = η1

(
C̄11 − C̄12 − C̄21 + C̄22

4

)
+ (1− η1)C̄33 + η2(C̄13 − C̄23 − C̄32 + C̄31), (52)

with

η1 =
(∆ε0

11 −∆ε0
22)2

(∆ε0
11 −∆ε0

22)2 + (∆γ0
12)2

, η2 =
(∆ε0

11 −∆ε0
22)∆γ0

12

(∆ε0
11 −∆ε0

22)2 + (∆γ0
12)2

. (53)

For cases when the denominator (∆ε0
11−∆ε0

22)2+(∆γ0
12)2 vanishes, η1 = 0.5 and η2 = 0 are used. Specifically,

if the effective macroscopic material is orthotropic, the third term in Eq. (52) can be dismissed. Similarly,
this self-consistent scheme can also be extended to 3D materials. The expressions of κ0 and µ0 for the 3D
self-consistent scheme are derived based on Eq. (49) and (50).

κ0 =
C̄11 + C̄12 + C̄13 + C̄21 + C̄22 + C̄23 + C̄31 + C̄32 + C̄33

9
(54)

and

µ0 =
∆ε0

d : C̄ : ∆ε0
d

∆ε0
d : T : ∆ε0

d

, (55)

where T is a transformation tensor derived from the optimum problem. It can be written in Voigt notation
as

T =



4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (56)

Eqs.(52) and (55) show that the optimum shear modulus, µ0, is weighted by the loading direction,
which helps to capture the hardening effect on the stiffness tensor. This improves the accuracy of the
self-consistent scheme as compared to simply determining κ0 and µ0 by minimizing the distance between
the stiffness tensors C0

iso and C̄, which would correspond to averaging the optimum shear modulus in all
directions. The algorithm of the self-consistent scheme is shown in Box I in a general sense. For nonlinear
materials, the stress increment ∆σJm is a nonlinear function of its strain increment ∆εJm, and Newton’s
method is normally used to solve the nonlinear system iteratively at each load increment. Additional details
on the Newton’s iteration are provided in the Appendix C.
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Box I General algorithm for the self-consistent scheme

1. Initial conditions and initialization: set
(
κ0, µ0

)
;n = 0; {∆εIm,∆ε0}n = 0

2. For loading increment n+1, update the interaction tensor DIJ and the stiffness tensor of the reference
material C0 based on

(
κ0, µ0

)
3. Solve the discretized Lippmann-Schwinger equation (36). For nonlinear materials, Newton’s method

is used.

4. Compute the effective stiffness tensor C̄, and calculate the optimum
(
κ0, µ0

)
using Eq. (51) and

(52) (2D plane strain)

5. Check error criterion for
(
κ0, µ0

)
; if not met, go to 2

6. Update the strain and stress increments: {∆εIm,∆ε0}n+1, {∆σIm}n+1

7. Update the index of loading increment: n← n+ 1

8. If simulation not complete, go to 2.

5. Microscale elasto-plastic RVE with damage

Numerical examples are presented to investigate and demonstrate the performance of the micro-damage
algorithm combined with an SCA reduced order model. A detailed study is performed at the microscale
RVE level to investigate the effect of RVE size, and to validate the RVE predictions from the SCA model
against high-fidelity direct numerical simulations (DNS) with the finite element method and the FFT-based
method using a fine mesh and periodic boundary conditions. The computational efficiency of the proposed
method is also discussed.

5.1. Material properties and damage parameters

Self-consistent clustering analysis (SCA) is applied for the homogenization analysis of a nonlinear elasto-
plastic heterogeneous material with damage under 2D plane strain conditions. As shown in Fig. 5, an
RVE is created with multiple identical circular inclusions (phase 2) embedded in the matrix (phase 1).
The volume fraction of the inclusion phase is 30%. In practice, the microstructural morphology of the
RVE can be obtained from imaging techniques (e.g. scanning electron microscope and focus ion-beam) or
computational reconstruction. For SCA results comparison and validation, the problem is initially solved
using a 1200× 1200 DNS model with sides of length 2L and periodic boundary conditions.

RVE size: 𝐿/2

RVE size: 𝐿 RVE size: 2𝐿

Matrix (phase 1)
• Elastoplastic with damage

Inclusion (phase 2)
• Hard

• Soft 
𝐸% = 500	GPa, 𝜈% = 0.19

𝐸% = 1	GPa, 𝜈% = 0.19

𝐸2 = 100	GPa, 𝜈2 = 0.19

DNS: 1200×1200 mesh with PBCs

2

1300×300 mesh

600×600 mesh

Figure 5: Illustration of the microscale RVE of a two-phase heterogeneous material used for the analysis: matrix (phase 1) with
randomly distributed circular inclusions (phase 2) embedded. The DNS with 1200 × 1200 FE mesh has 1.44 million 4-node
linear plane strain element with reduced integration.
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To develop the material clustering database in the offline stage of SCA, linear elastic material properties
are used for the phase 1 and phase 2 materials:

E1 = 100 GPa, ν1 = 0.3; E2 = 500 GPa, ν2 = 0.19. (57)

where the subscripts 1 and 2 refer to the matrix phase and inclusion phase, respectively. The clustering
results based on the material properties in Eq. (57) are shown in Fig. 4. The number of phase 1 clusters
is denoted as k1, and the number of phase 2 clusters is denoted as k2. The ratio between k1 and k2 is
defined according to the phase volume fractions. For the composite material used in this paper, the number
of clusters in phase 2 is chosen as approximately half the number of clusters in phase 1 (k2 = dk1/2e), since
the volume fraction of phase 2 is 30%. It will be shown in Section 5.3 and 5.4 that it is possible to use the
same material database with the same RVE geometry but different phase properties.

After forming the material database, different material properties for the constituent materials can be
evaluated. The matrix phase is modeled as an elasto-plastic material which undergoes damage. Its local
constitutive law is given in Eq. (5) and an associative plastic flow law with a von Mises yield surface is
considered. The yield stress σY is determined by the hardening law as a function of the effective plastic
strain ε̄pl, which is a monotonically increasing internal state variable of the plastic material during the
deformation. The yielding stress σ0

Y is equal to 0.5 GPa. The hardening law is considered to be piecewise
linear and isotropic,

σY (ε̄pl) =

{
0.5 + 5ε̄pl ε̄pl ∈ [0, 0.04)

0.7 + 2ε̄pl ε̄pl ∈ [0.04,∞)
GPa. (58)

The inclusions remain as a linear elastic material, but either hard or soft inclusions can be considered
by making the Young’s modulus of the inclusions either harder or softer than the matrix phase. For these
two cases, the properties of the inclusion phase evaluated are

E2 = 500 GPa, ν2 = 0.19 hard inclusions, (59)

and
E2 = 1 GPa, ν2 = 0.19 soft inclusions. (60)

Damage evolution is modeled as an exponential function of the effective plastic strain,

dm(ε̄pl) =

0 if ε̄pl ≤ ε̄cr

1− ε̄cr

ε̄pl
exp(−α(ε̄pl − ε̄cr)) if ε̄pl > ε̄cr

(61)

where α is an evolution rate parameter and ε̄cr is the critical effective plastic strain at damage initiation.
Since the damage process is irreversible, α ≥ 0. If α = 0, the material is purely elasto-plastic with no damage.
For positive α, a fully damaged condition (dm = 1) will be achieved at a finite effective plastic strain. Unless
otherwise stated, the baseline damage properties used in this section are α = 100 and ε̄cr = 0.02. The
material parameters of the RVE are summarized in Table 1.

Table 1: Material parameters of the microscale elasto-plastic RVE with damage.

E1, GPa ν1 E2 (hard), GPa E2 (soft), GPa

100 0.3 500 1

ν2 σ0
Y , GPa α (default) ε̄cr (default)

0.3 0.5 100 0.02
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5.2. RVE size and the stabilized micro-damage algorithm

The effect of RVE size on the homogenized results is evaluated under uniaxial tension, biaxial tension,
and shear loading conditions. A comparison is made between an RVE of size L/2, an RVE of size L, and an
RVE of size 2L (see Fig. 5). Each RVE had the same inclusion radius, volume fraction and nearest inclusion
distance [32]. Three loading directions in terms of the macroscopic strain εM are considered:
1) uniaxial strain condition

{εM}11 = ε̄, {εM}22 = 0, {εM}12 = 0; (62)

2) biaxial strain condition
{εM}11 = ε̄, {εM}22 = ε̄, {εM}12 = 0; (63)

3) shear strain condition
{εM}11 = ε̄, {εM}22 = −ε̄, {εM}12 = 0; (64)

where ε̄ denotes the magnitude of the macroscopic strain.
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Figure 6: The DNS results for the micro-damage algorithm of a damaged RVE with hard inclusions (left) and soft inclusions
(right) under uniaxial loading. Three different RVE sizes are investigated: L2, L, and 2L.

For each step in the proposed homogenization scheme of Section 2, the computations are performed using
a finite element model with periodic boundary conditions. The homogenized stress-strain curves {σM}11-
{εM}11 for the damaged RVEs are shown in Fig. 6, where the subscript 11 indicates the homogenized values
in the 11 direction (direction of uniaxial loading). Inspection of the curves in Fig. 6 reveals some change

Table 2: Comparison of the toughness UT obtained using DNS for RVE sizes L/2, L, and 2L. Value in parenthesis indicates
relative difference to the corresponding prediction from RVE with size 2L. Toughness units are GJ/m3.

RVE Hard inclusions Soft inclusions

Size Uniaxial Biaxial Shear Uniaxial Biaxial Shear

2L 0.0735 0.3072 0.0103 0.0046 0.0049 0.0068

L 0.0749(1.9%) 0.3184(3.6%) 0.0104(1.0%) 0.0044(4.3%) 0.0049(0.5%) 0.0070(2.9%)

L/2 0.0829(12.7%) 0.3240(5.4%) 0.0111(7.8%) 0.0056(21.7%) 0.0060(22.4%) 0.0075(10.3%)

in the macroscopic responses given by the micro-damage homogenization algorithm, but the response with
damage is not overly sensitive to the RVE size.

The material toughness UT is defined as the energy per unit volume absorbed before material failure due
to load in a fixed loading direction. In a one-dimensional case, the material toughness is simply the area
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under a stress-strain curve. In general, this is expressed mathematically as

UT =

∫ εf
M

0

σdMdεM , (65)

where εfM is the failure strain for a fully damaged material (dM = 0.99 is used as the failure strain in this
calculation). The tabulated results in Table 2 show that the relative difference of the material toughness
decreases with increasing RVE size. The homogenized results are not sensitive to the RVE size, which
validates the existence of the RVE. Therefore, it provides an effective material damage model for a macroscale
material point within a concurrent simulation.

5.3. SCA for an RVE with hard/soft inclusions without material damage

The SCA reduced order method is first applied to an elasto-plastic RVE without considering material
damage. The material clustering database is determined in the offline stage using hard inclusions.
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Figure 7: The stress-strain curves of the undamaged RVE with hard inclusions (left) and soft inclusions (right). Three macro-
strain loading conditions are considered: uniaxial loading (blue), biaxial loading (black) and shear loading (red). The solid
lines represent the DNS results for comparison.

Three loading directions in terms of the macroscopic strain are considered: 1) uniaxial tension, 2) biaxial
tension, and 3) shear. The homogenized stress strain curves in the 11 direction ({σM}11 − {εM}11) of the
undamaged RVE with hard inclusions are presented in the lefthand side of Fig. 7. The numbers of clusters
considered in material phase 1 are 1 and 256, and the corresponding DNS results are plotted as the solid lines
for comparison. These results showed that the SCA predictions under all the three macro-strain constraints
are quite accurate, even with only a single cluster in phase 1.

For soft inclusions, it is not possible to achieve the same accuracy with the same number clusters. The
right-hand side of Fig. 7 shows that k1 = 1 is not sufficient to capture the stress-strain relation in the elastic
or plastic regimes, especially for the uniaxial and biaxial loading conditions. This observation is consistent
with the fact that the self-consistent theory in analytical micromechanics methods tends to underestimate
the stiffness of porous materials. Nevertheless, by increasing the resolution in the RVE, good agreement
with the DNS results can still be achieved, and with significantly fewer degrees of freedom than required by
DNS.

Again, it should be emphasized that although the SCA database is created based on the RVEs with hard
inclusions (see Eq. (57)), it is valid for other RVEs with the same morphology but different combinations
of material properties. As a result, the SCA database (clusters and the interaction tensor DIJ) can be
regarded as a microstructural database which characterizes the geometric heterogeneity of the material and
enables the online reduced-order calculation.
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The computational cost comparison in Table 3 shows that a typical two-dimensional DNS calculation
with a 1200 × 1200 mesh and 50 loading increments requires 7814 s (≈ 130 min) on one Intel i7-3632
processor, while the online stage of SCA (programmed in MATLAB) took 0.35 s, 2.5 s, 117.8 s on one Intel
i7-3632 processor for k1 = 4, k1 = 64 and k1 = 1024, respectively.

Table 3: Computational time of the RVE homogenization of various numbers of clusters on one Intel i7-3632 processor.

k1 1 4 16 64 256 1024 DNS time

Wall clock time (s) 0.23 0.35 0.80 2.5 11.2 117.8 7814

Speedup of SCA 3.4× 104 2.2× 104 9.8× 103 3.1× 103 698 66 NA

5.4. SCA for an RVE with hard/soft inclusions and material damage

The SCA reduced order method is next applied to the same elasto-plastic RVE with hard and soft
inclusions. The matrix phase of the RVE is allowed to undergo material damage, which is computed using
the micro-damage algorithm in Section 2, and the damage evolution law in Eq. (61).

0.00 0.02 0.04 0.06 0.08
f0Mg11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f<
M

g 1
1

(G
P
a
)

k1 = 4
k1 = 16
k1 = 64
k1 = 256
k1 = 1024
DNS

0.00 0.02 0.04 0.06 0.08
f0Mg11

0.0

1.0

2.0

3.0

4.0

5.0

6.0

f<
M

g 1
1

(G
P
a
)

k1 = 4
k1 = 16
k1 = 64
k1 = 256
k1 = 1024
DNS

0.00 0.01 0.02 0.03 0.04
f0Mg11

0.0

0.1

0.2

0.3

0.4

0.5

f<
M

g 1
1

(G
P
a)

k1 = 4
k1 = 16
k1 = 64
k1 = 256
k1 = 1024
DNS

Figure 8: The stress-strain curves of the damaged RVE with hard inclusions for uniaxial tension, biaxial tension, and shear
loading.

The homogenized stress-strain results computed using both DNS and SCA with material damage are
shown in Fig. 8 for hard inclusions and Fig. 9 for soft inclusions. Results are presented for uniaxial tension
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loading, biaxial tension loading, and shear loading. With the same level of discretization, the SCA predictions
with material damage considered do not exhibit the same level of accuracy as the SCA predictions without
considering material damage (see Fig. 7). The clustering algorithm was noted to be stiffer for the number
of clusters evaluated than the DNS calculation. This difference is expected since material damage is a more
localized process than plasticity, and more clusters are required for adequate resolution in the damaged
region. On the other hand, the clustering result based on linear elastic responses may not be sufficient for
capturing highly localized damage behavior, and this issue will be investigated in future work.
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Figure 9: The stress-strain curves of the damaged RVE with soft inclusions for uniaxial tension, biaxial tension, and shear
loading.

For hard inclusions, it can be seen that under biaxial tension loading and shear loading, SCA results
matched the peak stresses and damage evolution with very few clusters. For the uniaxial tension loading, the
SCA method tends to overpredict the peak stress and damage evolution, meaning that additional clusters
may be required. For soft inclusions, the SCA method is capable of capturing the effect of the damage, but
tends to overpredict peak stress and damage evolution. This finding is consistent with the findings in the
self-consistent micromechanics theory. In Section 5.5, an energy regularization methodology is presented
which provides an effective way of calibrating the damage parameters.

The macroscopic material damage behavior can be characterized by the material toughness, UT , as a
function of the strain ratio εRM/ε

avg
M , where εavgM and εRM denote the macroscopic normal strain and shear

strain, respectively. Due to the isotropy of the RVE considered in this work, the material toughness should
be uniquely determined by the loading direction denoted by εRM/ε

avg
M . For a given set of εavgM and εRM , the
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loading condition is defined to be

{εM}11 = εavgM , {εM}22 = εavgM , {εM}12 = εRM . (66)

The material toughness, UT , is defined in Eq. (65). When computing the material toughness for each
loading path, the loading direction, or the strain ratio εRM/ε

avg
M , is fixed.
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Figure 10: The material toughness calculations for RVEs with hard inclusions (left) and soft inclusions (right).

Figure 10 shows the material toughness UT of the RVE as a function of the ratio of εRM to εavgM . For hard
inclusions, the toughness decreases monotonically with increasing strain ratio εRM/ε

avg
M , and overall effective

toughness is higher under the biaxial loading than by pure shearing loading by more than one order of
magnitude. Similar to the matrix material, the effective damage evolution of the RVE with hard inclusions
is dominated by the deviatoric component of the average stress, resulting in a low toughness under the pure
shearing loading. The result for soft inclusions shows that the material toughness is no longer a monotonic
function of the strain ratio, and that the material toughnesses does not vary much with the strain ratio. This
can be explained by the fact that the soft inclusions undergo volumetric change under hydrostatic loading,
which also induces high shear deformation and damage in the surrounding matrix material.

5.5. Energy regularization for calibrating damage parameters

The damage model should correctly reflect the energy dissipation in the macroscale fracture process. As
a result, parameters in the damage evolution law need to be adjusted according to the measured fracture
energy Gc under a given loading direction. Mathematically, the fracture energy should be

Gc = GDNSc (α0, ε̄
cr
0 ) = GSCA,kc (α, ε̄cr), (67)

where k denotes the number of clusters in the SCA reduced-order model. The fracture energy Gc represents
the dissipated energy due to fracture per unit crack surface in the macroscale, which serves as a physical
material constant and should not depend on the choice of numerical models. The units of Gc is GJ/m

2
.

Given a length parameter lh from the macroscale model, Gc can be expressed as

Gc = lhUF (α, ε̄cr), (68)

where UF represents the energy dissipated by fracture per unit volume at a material point. In the paper,
the material toughness, UT , is used to approximate the fracture energy, UF ,

Gc ≈ lhUT (α, ε̄cr), (69)
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Figure 11: The stress-strain curves of the damaged RVE with hard inclusions (left) and soft inclusions (right) for uniaxial
tension loading. Damage parameters are calibrated using energy regularization.
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Figure 12: RVE damage fields in the matrix phase at {εM}11 = 0.04 predicted by DNS and SCA following energy regularization
for hard inclusions and soft inclusions. No damage is considered in the inclusion phase.

The fracture energy, Gc, is usually measured experimentally, but for demonstration purposes, the DNS
results are used as the reference solution for calibrating the damage evolution rate, α, and the critical plastic
strain, ε̄cr, in the SCA model for energy consistency. Since the length parameter, lh, is determined by the
macroscale model, one only needs to match the material toughness between the SCA and DNS RVE models:

USCA,kT (α, ε̄cr) = UDNST (α0, ε̄
cr
0 ). (70)

The damage parameters α0 and ε̄cr
0 used for the DNS calculation are α0 = 100 and ε̄cr

0 = 0.02. Additionally,
it is important to match the maximum stress, σc, during the loading process, which corresponds to the
ultimate strength of the material.

σSCA,kc (α, ε̄cr) = σDNSc (α0, ε̄
cr
0 ). (71)

The damage parameters calibrated under uniaxial tension loading are provided in Table 4. The homog-
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enized stress-strain curves following energy regularization are shown in Fig. 11. For the material with hard
inclusions, it is possible to match the peak stress with very few clusters, but matching the damage evolution
curve requires more clusters. For the material with soft inclusions, more clusters are required to match both
the peak stress and the damage evolution curve. Moreover, the comparison between damage fields from
DNS and SCA after the energy regularization are provided in Fig. 12. For both hard inclusions and soft
inclusions, the localized damage fields can be better captured with more clusters.

Table 4: Calibrated damage parameters (α, ε̄cr) for SCA for different numbers of clusters using energy regularization. The
damage parameters are unitless.

Hard inclusions Soft inclusions

α ε̄cr α ε̄cr

k1 = 4 52 0.0092 100 0.0015

k1 = 8 62 0.0112 60 0.0015

k1 = 16 63 0.0120 60 0.0020

k1 = 32 67 0.0128 50 0.0020

k1 = 64 72 0.0134 40 0.0020

k1 = 128 77 0.0140 30 0.0020

k1 = 256 81 0.0146 30 0.0025

DNS 100 0.02 100 0.02
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Figure 13: The material toughness calculations following energy regularization for hard inclusions (left) and soft inclusions
(right). The results without energy regularization are plotted for reference, and are denoted as (NR).

Figure 13 shows good agreement between the toughness computed using SCA and DNS. In addition, the
toughness results across the entire load spectrum agree much better after energy regularization, particularly
for RVEs with soft inclusions. With only a small number of clusters, the SCA reduced order model with
calibrated damage parameters can achieve good accuracy compared with DNS results.

6. Concurrent multiscale results and discussion

Concurrent multiscale simulations involving strain softening and localization are performed under two-
dimensional plane strain conditions and in three-dimensions. The proposed micro-damage homogenization
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scheme coupled with the SCA method is used. In these examples, the macroscale properties are determined
by the microstructural morphologies and the microscale constituents. The SCA material database is compiled
during the offline stage, greatly reducing the computational cost of analyzing the microscale RVE model with
minimal loss of accuracy, and making the concurrent simulation computationally feasible. The homogenized
material can predict the macroscale performance while capturing the physical phenomena appearing in the
microscale.

6.1. 2D Double-notched plate

A 2D tensile specimen with rounded notches in two corners [55] is depicted in Fig. 14. The notches in the
opposite corners cause a geometric stress concentration which will induce localization as the loaded upper
edge of the specimen is displaced. The material properties used for the matrix and the inclusion material
are given in Section 5.1; both hard and soft inclusions are analyzed. The simulations are conducted using
the explicit finite element method and 2D plane strain elements with reduced integration (one integration
point per element), and the micro-damage algorithm with the SCA model is implemented as a user-defined
material at each integration point. Specifically, LU decomposition in the Intel R© Math Kernel Library
(MKL) is utilized for solving the linear systems in the SCA model. A macroscopic element is deleted when
the effective damage parameter dM of its associated RVE reaches 0.99.

𝛥, 𝐹

𝑟%
𝑟%
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𝑟&
𝑎

𝑎

𝑟(

𝑎 = 25mm
𝑟% = 2.5mm
𝑟( = 5mm
𝑟& = 5.625mm

Microscale SCA model

Figure 14: Geometry of the double-notched specimen in the 2D plane-strain condition.
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Figure 15: Load-displacement curves with different mesh size le for hard inclusions. The non-local length parameter l0 is 2
mm.

The effectiveness of the non-local formulation is first investigated without considering energy regulariza-
tion. The microscale is modeled using an RVE with hard inclusions; the SCA database with 32 clusters in
the matrix phase is used for the microstructural RVE calculation. Figure 15 presents the load-displacement
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Microscale RVE with hard inclusions, 𝑙" = 1	mm

𝑙𝑒 = 0.38	mm
(4884	elements)

𝑙𝑒 = 0.28	mm
(8689 elements)

𝑙𝑒 = 0.18	mm
(19674	elements)

Figure 16: Crack patterns with different mesh size le for hard inclusions. The non-local length parameter is l0 = 2 mm. The
SCA model has 32 clusters in the matrix phase (k1 = 32).

curves from the concurrent simulations for three different macroscale FE meshes shown in Figure 16. A
non-local length parameter of l0 = 2 mm is used. Moreover, the crack patterns after the coupon failure for
all three mesh sizes are also shown in Figure 16. It can be concluded that given l0 > 4le, the non-local
formulation can effectively diminish the mesh-size dependency, as well as the pathological mesh dependency.
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Figure 17: Load-displacement curves predicted by SCA databases with different number clusters k1 before energy regularization.

Figure 17 shows the load-displacement curves for RVEs with hard inclusions and soft inclusions predicted
using concurrent simulation without energy regularization. The numbers of clusters in phase 1 in the
microscale reduced-order model ranges from 4 to 64. Since the concurrent simulation with microscale RVE
modeled by DNS is computationally expensive, the multiscale DNS results are not provided for comparison.
Faster convergence is observed in models with hard inclusions than those with soft inclusions. In addition, the
predictions have a higher fidelity in the elasto-plastic regime than in the strain-softening regime. Increasing
the number of clusters in the microscale RVE clearly improves the prediction, but the convergence rate is
not satisfactory, similar to the convergence rates observed in the Section 5.4.

Energy regularization is introduced to increase the fidelity of the calculation. The calibrated damage
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Figure 18: Load-displacement curves predicted by SCA databases with different number clusters k1 after energy regularization.
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Figure 19: Crack patterns predicted by SCA databases with different number clusters k1 after energy regularization.

parameters for different numbers of clusters have been provided in Table 4. The load-displacement curves
from the concurrent simulations after energy regularization are shown in Figure 18. It can be seen that
the accuracy and convergence rate with respect to the number of clusters have been improved, for both
hard and soft inclusions. Meanwhile, Figure 19 presents the crack patterns from the concurrent simulation
with energy regularization, which shows a consistent cracking pattern as the number of cluster is increased.
Although the same microstructure and SCA database have been used, the crack patterns for hard and soft
inclusions are noticeably different. The influence of micro-constituent on the macro-responses is captured
by the concurrent simulation driven by the SCA database.

The computational times for the 2D concurrent simulations and k1 ranging from 4 to 64 are listed in
Table 5. The macroscale mesh size is le = 0.28 mm, and there are in total 8689 elements in the model. All
the simulations are conducted on 24 cores (in a state-of-the art high performance computing cluster with the
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Table 5: Computational time of the 2D concurrent simulations of various numbers of clusters in phase 1 on 24 cores.

k1 4 8 16 32 64 Estimated DNS time

Wall clock time (min) 19 44 117 416 1948 4.2× 105 (295 days)

Speedup of SCA 2.2× 104 9.5× 103 3.6× 103 1.0× 103 216 NA

following compute nodes: Intel Haswell E5-2680v3 2.5 GHz 12-cores). A linear scalability with the number
of cores is observed for small number of clusters. When k1 > 16, the computational time of the concurrent
simulation increases approximately as the square of k1. Based on the computational time of SCA (k1 = 4)
and DNS for the RVE calculation in Section 5, the estimated DNS time (FE2) of the concurrent simulation
would be 295 days (see Table 5).

6.2. 3D Double-notched plate
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Figure 20: Geometry of the 3D double-notched coupon and microscale SCA model with 8 clusters in the matrix phase. The
non-local length parameter l0 is equal to 2 mm.
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Figure 21: Macroscale FE mesh with local refinement (left) and load-displacement curve of the 3D concurrent simulations with
hard inclusions (right).

The micro-damage algorithm and the SCA method are further applied to 3D concurrent simulations for
the double-notched model shown in Figure 20. The in-plane shape of the 3D model is identical to the 2D
example shown in Figure 14, and the applied boundary conditions are also identical to the 2D model. The
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thickness of the FE model is 8 mm. Symmetric boundary conditions are applied on the back face on the
X-Y plane (no displacement in the Z-direction), resulting in an effective total thickness of 16 mm. The
non-local length parameter is l0 = 2 mm. The mesh is refined in the region containing the crack with the
characteristic mesh size le = 0.18 mm, so there are approximately 10 elements through the thickness of the
damage region. For the macroscale FE model, there are in total 154,371 3D hex elements with reduced
integration (one Gauss/integration point per element).

The microscale 3D RVE model has identical spherical inclusions embedded in the matrix, and the volume
fraction of the inclusion phase is 20%. The corresponding DNS FE mesh for the RVE is 80× 80× 80. In the
microscale SCA model, there are 8 clusters in the matrix phase and 2 clusters in the inclusion phase. An
RVE with hard inclusions is considered in the microscale. All the material parameters are same as before
(see Table 1). Specifically, the initial damage parameters α = 100 and ε̄cr = 0.02 are used. The macroscopic
elements will be deleted when the effective damage parameter dM of the RVE reaches 0.99.

von Mises stress field 3D Damage field

Displacement

Δ = 0.15 mm

Fully-developed 

damaged zone

Damage field cross section 

at plane 𝑥0 = 7.5 mm

Figure 22: The von Mises stress distributions and crack patterns of the 3D concurrent simulations at two loading states. The
microscale stress and damage fields inside the RVE are shown in sequence at three different integration points marked in the
macroscale model.

The load-displacement curve from the concurrent simulations with hard inclusions is shown in Figure 21,
and the crack patterns at different loading states are also provided in Figure 22. Meanwhile, the microscale
stress and damage fields are shown for RVEs at different integration points in the macroscale model. In
the concurrent coupling, the microscale RVE reduced order model not only provides the overall stress-
strain responses for the macroscale FE model, but also stores local quantities like plasic strain and damage
parameter inside the microstructure/clusters. It can be observed that the concurrent simulations are able to
demonstrate a non-planar crack through the cross-section due to the constraint effects of the thick coupon.
In addition, the crack front is curved as one can see from the snapshots at displacement ∆ = 0.15 mm. The
damaged region initiates at the center of the model cross-section and propagates forward and toward the
boundaries.

Due to the limitation of computational resources, convergence tests and energy regularization have not
yet been performed for the 3D problem, but these preliminary concurrent simulations demonstrate the
capability of the SCA multiscale modeling framework for capturing the microstructural effect. By using 72
cores (Intel Haswell E5-2680v3 2.5 GHz 12-cores), the concurrent simulation with the Intel MKL library
required approximately 56 hours. Based on the time comparison for the 3D RVE computation [49], the
estimated DNS time for the same concurrent simulation, with the original 80 × 80 × 80 FEM mesh in the
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Table 6: Computational time of the 3D concurrent simulations of various numbers of clusters in phase 1 on 72 cores.

SCA(k1 = 8) Estimated DNS time

Wall clock time (min) 56 hours 1.1× 105 days

Speedup of SCA 4.6× 104 NA

microscale and the same computational resources, would be more than 1× 105 days (see Table 6).

7. Conclusion

In this paper, a stable micro-damage algorithm has been introduced which removes the need for a material
length parameter in the microstructural RVE. By matching the effective elastic strains of the undamaged
and damaged RVE, strain localization is avoided in the microscale RVE, and the homogenized behavior in
the strain-softening regime is independent of the RVE size. No material length parameter is required in the
microscale, and the RVE homogenization is able to capture the driving mechanisms of the damage process.

A macroscopic material length parameter is utilized to alleviate the material instability associated with
strain softening behavior in the macroscopic calculation. It is demonstrated that the non-local damage
model with the length parameter can effectively remove the pathological mesh dependence.

Self-consistent clustering analysis (SCA) provides an efficient computational technique for an RVE under-
going nonlinear history-dependent deformation. A good tradeoff between efficiency and accuracy is possible
with SCA through the domain decomposition based on k-means clustering of high-fidelity data and the
micromechanics-based self-consistent scheme. A new projection-based self-consistent scheme for solving the
Lippmann-Schwinger equation is proposed in the SCA online/prediction stage, which is able to handle the
RVE problem under complex loadings in a concurrent simulation. With the same SCA database, different
macroscale crack paths are predicted for RVEs with different inclusion properties (hard inclusions versus
soft inclusions). The proposed method is general and can be applied to various material systems with more
complex settings.

Table 7: Summary of the computational time for the RVE homogenization and concurrent simulations. k denotes the total
number of clusters in the SCA database.

2D RVE 2D concurrent 3D concurrent

SCA (k = 1536) DNS SCA (k = 96) DNS (est.) SCA (k = 10) DNS (est.)

Time 118 s 7814 s 1948 min 4.2× 105 min 56 h 2.4× 105 h

Speedup 66 NA 216 NA 4.6× 104 NA

A solution comparison with DNS has shown that the proposed micro-damage methodology coupled with
SCA is capable of achieving accurate solutions at an incredible reduction of computational expense (see
Table 7). For a 2D plane strain problem, the solution time using SCA is 1948 minutes using 64 clusters
compared with an estimated 295 days required for a DNS calculation. For a 3D problem, the SCA solution
time is 56 hours, compared with an estimated 1× 105 days using DNS.
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Appendix A. Clustering of the strain concentration tensor

Details of clustering the material points in the RVE are discussed in this Appendix. For a 2-dimensional
model, the strain concentration tensor A(x) in each material point has 9 independent components. The
format of the raw data for a 2D material is shown below

13

Elndex                            
1          

2          … … ……
          

DataIndex

where N is the total number of discretization points in the DNS. For the 1200 × 1200 mesh used in the
paper, N is equal to 1440000. For a 3-dimensional model, A(x) has 36 independent components.

The next step is to perform the domain decomposition by grouping similar data points using k-means
clustering [53]. Mathematically, given a set of strain concentration tensors the objective of k-means clustering
is to minimize the within-cluster least squares sum for the k sets S = {S1, S2, ..., Sk} to obtain the shape of
the clusters:

S = argmin
S′

k∑
J=1

∑
n∈SJ

||An − ĀJ ||2, (A.1)

where An is the strain concentration tensor of the n-th data point, and ĀJ is the mean of all the strain
concentration tensors at the points within the cluster SJ . The above norm is defined as usual, e.g. for a
general second-order matrix Z of dimension m×m

||Z|| =

√√√√ m∑
i=1

m∑
j=1

z2
ij =

√
trace(ZTZ), (A.2)

and is called the Frobenius norm of matrix Z. In this paper, the standard algorithm (Lloyd’s algorithm)
[56] is used to solve the k-means clustering problem, which is essentially an optimization process minimizing
the sum in Eq. (A.1).

At the initialization step, k data points are randomly selected from the data set and served as the initial
means (Forgy method [57]). The algorithm then iterates between the following two steps,

1. Assignment step: Each data point is assigned to the cluster whose mean is nearest to the data point.

In other words, within the t-th iteration, ∀{An} ∈ S(t)
I

||{An} − Ā
(t)
I ||2 6 ||{An} − Ā

(t)
J ||2 ∀J, J 6= I (A.3)

2. Update step: The mean values of the data points in the new cluster are recalculated for iteration t+1,

Ā
(t)
I =

1

N
(t)
I

∑
{An}∈S(t)

I

{An} (A.4)

where N
(t)
i is the number of data points in cluster S

(t)
I .

When the assignment of data points no longer changes, the algorithm is said to converge to a local optimum.
Finally, it should be noted that other clustering methods can also be applied for this problem, such as the
density-based spatial clustering of applications with noise (DBSCAN) method [58].
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Appendix B. Computing the interaction tensor

In the discretized/reduced Lippmann-Schwinger equation, the piecewise uniform assumption can be
utilized to extract the interaction tensor DIJ , which represents the influence of the stress in the J-th cluster
on the strain in the I-th cluster [49]. In a periodic RVE domain Ω, the interaction tensor can be written as
a convolution of the Green’s function and the characteristic functions,

DIJ =
1

cI | Ω |

∫
Ω

∫
Ω

χI(x)χJ(x′)Φ0(x,x′)dx′dx, (B.1)

where cI is the volume fraction of the I-th cluster and | Ω | is the volume of the RVE domain. Φ0(x,x′)
is the fourth-order periodic Green’s function associated with an isotropic linear elastic reference material
and its stiffness tensor is C0. As will be shown in Section 4.2, this reference material is introduced in the
online stage as a homogeneous media to formulate the Lippmann-Schwinger integral equation. With the
periodicity of the RVE, Φ0(x,x′) takes a simple form for isotropic materials in the Fourier space,

Φ̂
0
(ξ) =

1

4µ0
Φ̂

1
(ξ) +

λ0 + µ0

µ0(λ0 + 2µ0)
Φ̂

2
(ξ), (B.2)

with

Φ̂1
ijkl(ξ) =

1

| ξ |2
(δikξjξl + δilξjξk + δjlξiξk + δjkξiξl) (B.3)

Φ̂2
ijkl(ξ) = −ξiξjξkξl

| ξ |4
, (B.4)

where ξ is the coordinate in Fourier space corresponding to x in real space, and δij is the Kronecker delta

function. λ0 and µ0 are Lamé constants of the reference material. The expression of Φ̂0
ijkl(ξ) is not well

defined at frequency point ξ = 0. However, imposing by the boundary conditions for deriving the Green’s
function, a uniformly distributed polarization stress field will not induce any strain field inside the RVE,
which indicates

Φ̂0
ijkl(ξ = 0) = 0. (B.5)

Based on Eq. (B.2), the convolution term in the spatial domain in Eq. (B.1) can be translated into a direct
multiplication at each point ξ in the frequency domain using a Fourier transformation,

Φ̄
0
J(x) =

∫
Ω

χJ(x′)Φ0(x,x′)dx′ = F−1
(
χ̂J(ξ)Φ̂

0
(ξ)
)
. (B.6)

It can see from Eq. (B.3) and (B.4) that Φ̂
1
(ξ) and Φ̂

2
(ξ) are independent of the material properties,

meaning that they can be computed one time only in the offline stage. If the reference material is changed
in the self-consistent scheme at the online stage, only the coefficients relating to its Lamé constants in Eq.
(B.2) need to be updated.

Appendix C. Newton’s iteration in the online stage

In the implicit scheme, the residual {r} = {r1; ...; rk; rk+1} is linearized with respect to {∆ε}. Dropping
terms of higher order than linear gives

{r}+ {M}{dε} = 0 with {M} =
∂{r}
∂{∆ε}

, (C.1)

where {M} is called the system Jacobian matrix. For I, J = 1, 2, ..., k,

MIJ = δIJI + DIJ :
(
CJ
alg −C0

)
and MI(k+1) = −I, (C.2)
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where δIJ is the Kronecker delta in terms of indices I and J , and I is the fourth-order identity tensor. CJ
alg

is the so-called algorithmic stiffness tensor of the material in the J-th cluster and is an output of the local
constitutive law for the current strain increment in that cluster ∆εJn,

CJ
alg =

∂∆σJ

∂∆εJ
. (C.3)

Although local material damage is decoupled with the equilibrium condition to avoid material instability
in this paper, it is still possible to introduce the damage into the local constitutive law and CJ

alg can be
written as

CJ
alg = (1− dJ)

∂∆σJud
∂∆εJ

, (C.4)

where ∂∆σJud/∂∆εJ represents the algorithmic stiffness tensor of the undamaged pure elasto-plastic ma-
terial. Under the macro-strain constraint, the remaining components in the system Jacobian matrix are

M(k+1)I = cII and M(k+1)(k+1) = 0. (C.5)

For macro-stress constraint,

M(k+1)I = cICI
alg and M(k+1)(k+1) = 0. (C.6)

Finally, the correction of the incremental strain can be expressed as

{dε} = −{M}−1{r}. (C.7)

Based on the updated incremental strain, the constitutive relationship in each cluster can then be used to
compute the new incremental stress {∆σ} = {∆σ1; ...; ∆σk}. If ∆σI and ∆εI have a nonlinear relation,
several iterations are needed so that the residual {r} can vanish.
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[37] S. Bhattacharjee, K. Matouš, A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous
hyperelastic materials, Journal of Computational Physics 313 (2016) 635–653.

[38] J. Yvonnet, E. Monteiro, Q.-C. He, Computational homogenization method and reduced database model for hyperelastic
heterogeneous structures, International Journal for Multiscale Computational Engineering 11 (3).
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