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Abstract Modern materials design requires reliable and

consistent structure-property relationships. The paper

addresses the need through transfer learning of deep

material network (DMN). In the proposed learning strat-

egy, we store the knowledge of a pre-trained network

and reuse it to generate the initial structure for a new

material via a naive approach. Significant improvements

in the training accuracy and learning convergence are

attained. Since all the databases share the same base

network structure, their fitting parameters can be in-

terpolated to seamlessly create intermediate databases.

The new transferred models are shown to outperform

the analytical micromechanics methods in predicting

the volume fraction effects. We then apply the uni-

fied DMN databases to the design of failure properties,

where the failure criteria are defined upon the distribu-

tion of microscale plastic strains. The Pareto frontier

of toughness and ultimate tensile strength is extracted

from a large-scale design space enabled by the efficiency

of DMN extrapolation.
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1 Introduction

Many applications in material science and engineering

require good structure-property relationship across dif-

ferent length scales [1,2]. It becomes the key to under-

standing and quantifying the physical interactions be-

tween fine-scale structures in the task of materials de-

sign, where the ultimate goal is to determine what mi-

crostructure will produce the desired macroscopic prop-

erties [3]. Advances in experimental techniques [4] al-

low designers to gather extensive data on microstruc-

ture images and mechanical responses, while finding a

consistent and reliable modeling technique for extract-

ing the structure-property relationship from the data

remains an elusive challenge.

Classical empirical models with well-designed for-
mulations provide nice approximation to the stress-strain

data for a given material, but the fitted parameters

usually lose the link to microscale physics and fail to

guide materials design. Computational homogenization

offers a reliable way to obtain macroscopic material re-

sponses from the analysis of a microscale representa-

tive volume element (RVE) [5]. The RVE model is con-

structed in such a way that it can statistically repre-

sent the microstructural morphologies and interactions

inside a material. Direct numerical simulation (DNS) of

RVE based on finite element method (FEM) [6], mesh-

free methods [7,8] or fast Fourier transform (FFT)-

based method [9,10] is accurate, but usually too time-

consuming to drive a design process.

Data-driven methods for RVE analysis and multi-

scale material modeling have attracted increasing at-

tentions in computational mechanics and physics. They

have shown great potential to accelerate the online pre-

diction by intelligently utilizing the ”big” data from

experiments or a prior DNS. Many methods used ma-
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chine learning models as alternatives to classical empir-

ical models for fitting complex unknown functions, such

as artificial neural networks [11,12] and Gaussian pro-

cess regression [13,14,15]. Efforts have also been made

to embed physics into the data-driven models. Oliver

et al [16] adopted the proper orthogonal decomposition

(POD) to find a low-dimension representation of the

fluctuating strain field for an RVE fracture problem.

Kalidindi and co-workers [17,18] developed the materi-

als knowledge systems (MKS) for fast RVE analysis by

calibrating the Green’s function-based convolution ker-

nels from the statistical continuum theories. Liu et al.

[19,20,21] proposed the self-consistent clustering anal-

ysis (SCA) to model nonlinear history-dependent ma-

terials both efficiently and accurately. It uses k-means

clustering to group material points with similar me-

chanical responses and solves the reduced-order integral

equation in a self-consistent scheme. The SCA method

was reformulated by Yu et al. [22] for elasto-viscoplastic

materials under finite deformation.

Recently, Liu et al. [23,24] proposed a mechanis-

tic data-driven multiscale modeling method called deep

material network (DMN) which creates high-fidelity re-

duced representations of both 2D and 3D RVEs. The

key ingredients of DMN are a network structure for cap-

turing the complexity of microstructural interactions,

and a simple two-layer building block for reproducing

the material physics. Due to its efficiency and capability

of extrapolation to unknown materials, DMN has been

applied to addressing various RVE challenges, such as

hyperelastic rubber composite under large deformation,

polycrystalline materials with rate-dependent crystal

plasticity and carbon fiber reinforced polymer (CFRP)

composites. The network structure with physically based

parameters also provides a promising tool for materials

design.

Although DMN finds proper reduced representations

of a given RVE through stochastic gradient descent

(SGD), the trained networks for RVEs with different

microstructures are not related if the fitting parame-

ters are randomly initialized. This gap between DMN

databases is usually not desired by a material designer

since it prevents smooth variations of microstructural

design parameters. On the other hand, more layers are

needed to model complex materials. However, deeper

networks become harder to be optimized because there

are more fitting parameters and the learning process

may encounter more traps with poor local minima.

The concept of transfer learning has been intro-

duced to resolve similar issues appeared in other ma-

chine learning tasks. Thrun [25] discussed the knowl-

edge transfer for multi-task training and found that

the learning for object recognition becomes easier with

knowledge from past task. Raina et al. [26] presented a

transfer learning algorithm that constructs an informa-

tive Bayesian prior based on previous similar learning

problems, and observed large error reduction in binary

text classification. In terms of materials informatics,

Lubbers et al. [27] used the activations in the VGG-

19 model [28] pre-trained from the ImageNet database

to characterize the microstructure images. Li et al. [29]

also adopted the VGG-19 model to calibrate the dif-

ference between original and reconstructed images, and

their transfer learning approach outperforms many ex-

isting methods in microstructure reconstruction.

In this paper, we present a transfer learning strategy

of DMN that constructs a unified set of databases for

multiple RVEs. The next section gives a brief overview

of the DMN framework and the learning task on 2D

particle-reinforced RVEs. In Section 3, a naive approach

is proposed to migrate the pre-trained database, and

the continuous structure-property relationship is de-

rived via the database interpolation technique. Section

4 provides the training results and compares the trans-

ferred models to those from analytical micromechan-

ics methods. In Section 5, the databases from trans-

fer learning are further applied to the design of failure

properties of nonlinear plastic materials. Concluding re-

marks are given in Section 6.

2 Deep material network

2.1 An overview

We first introduce the basic concepts in the framework

of deep material network (DMN). As shown in Fig-
ure 1, a typical material network is created based on a

binary-tree structure connected by two-layer mechanis-

tic building blocks. The complexity of network is deter-

mined by the number of layers, denoted by the depth

N . Since each node has two child nodes, the bottom

layer N initially has 2N−1 nodes. However, nodes can

be deactivated during the training process. The num-

ber of active nodes in the bottom layer is counted by

the number Na, and we have Na ≤ 2N−1. During the

computation, these active nodes act as the degrees of

freedom (DOFs) in the model. An intriguing feature of

DMN is that its computational complexity is propor-

tional to Na.

To track the physical fractions of nodes in the net-

work, each node is associated with a weight w. For the

k-th node at Layer i, its weight wk
i is given by

wk
i =

2N−ik∑
j=2N−i(k−1)+1

wj
N =

2N−ik∑
j=2N−i(k−1)+1

a(zj), (1)
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Fig. 1 Illustration of 2D DMN with a binary-tree structure
(modified from Liu et al. 2019 [23]). The two-layer building
block is presented in the dashed box. Inputs and outputs are
demonstrated for small-strain cases.

where the weight at the bottom layer wj
N is determined

by the activation zj , and the activation function a is

chosen as the rectified linear unit (ReLU). As one can

see from Eq. (1), all the weights in the network can

be computed from zj . Other than the homogenization

operation defined by the weights, a rotation operation

is introduced in each building block to enhance model

adaptivity, which is controlled by the rotation angle θki .

As a result, the fitting parameters in a 2D DMN with

depth N are zj=1,2,...,2N−1

and θk=1,2,...,2i−1

i=1,2,...,N . Different

from the weights and biases in a generic neural network,

all the DMN fitting parameters have physical meanings;

hence they should be valid under model exploration.

Analytical homogenization and rotation functions

can be derived for the two-layer building block. In this

paper, we will focus on 2D small-strain problems under

plane strain condition, where the quantities to propa-

gate in the network are the compliance matrix D and

the residual strain δε. Details on the derivations for

these analytical functions are provided in Appendix A.

Noted that the current 2D small-strain DMN frame-

work can be extended to solve general finite-strain RVE

problems with material nonlinearities [23]. We have also

shown that a 3D RVE with complex morphology can

be effectively described by a network of 3D two-layer

building blocks in [24].

Offline stage For a two-phase RVE, the offline inputs of

DMN are the elastic compliance matrices Dp1 and Dp2,

which are assigned to the bottom-layer nodes under the

following scheme,

Dj
N =

{
Dp1, if j is odd

Dp2, if j is even
. (2)

By applying the homogenization and rotation functions

at each building block repeatedly, the information of the

compliance matrix is propagated from the bottom layer

to the output layer, and the overall quantity D̄
rve

can

be expressed as

D̄
rve

= h
(
Dp1,Dp2, zj=1,2,..,2N−1

, θk=1,2,...,2i−1

i=1,...,N

)
. (3)

To determine the fitting parameters zj and θki , an op-

timization problem is formulated based on the mean

square error (MSE), and its cost function is given by

C(z, θ) =
1

2Ns

∑
s

||D̄dns
s − D̄

rve
s ||2

||D̄dns
s ||2

+ λL(z), (4)

with

L(z) =

∑
j

a(zj)− 2N−2

2

.

where D̄
dns
s is the s-th data points in the training dataset

generated by DNS, and Ns is the total number of train-

ing samples. The regularization term λL(z) is intro-

duced to constrain the magnitude of z so that the opti-

mization problem is well-posed. Design of experiments

(DoE) based on the random sampling is used to gener-

ate the offline dataset {Dp1,Dp2; D̄
dns}. More details

on DoE can be found in Appendix B.

Stochastic gradient descent (SGD) is adopted to

minimize the cost function. Due to the existence of an-

alytical functions in the building block, the gradients of

the cost function with respect to the fitting parameters

∇C can be computed through the backpropagation al-

gorithm. In addition, two model compression methods

are developed to accelerate the training speed and im-

prove the convergence [23]:

1. Deletion of nodes with only one child node;

2. Merge of subtrees based on similarity search.

Online stage Although the material network is trained

with only linear elastic data, the essential microstruc-

tural interactions have been captured by the connected

mechanistic building blocks with properly fitted param-

eters. As a result, the trained network can be extrap-

olated to unknown material and loading spaces with

arbitrary nonlinearities. For 2D small-strain problems

with material nonlinearity (e.g. plasticity), the inputs

of DMN are Dj
N and δεjN as shown in Figure 1. In the

online stage, each active node in the bottom layer is

regarded as an independent material point, whose tan-

gent compliance matrix and residual strain are given by

the local constitutive law. The outputs D̄
rve

and δε̄rve
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of the forward homogenization process can be written

as functions of the inputs and the fitting parameters:

D̄
rve

= hD

(
Dj=1,2,..,2N−1

N , zj , θki

)
, (5)

and

δε̄rve = hε

(
δεj=1,2,..,2N−1

N , zj , θki

)
. (6)

We can then apply macroscopic boundary conditions

at the output layer, and extract the unknown compo-

nents within the macroscopic stress or strain. In the

de-homogenization process, the stress and strain data

are propagated backward from the output layer to the

active nodes in the bottom layer. Newton’s method is

used to solve the nonlinear system, and the homoge-

nization and de-homogenization processes are iterated

by turns until the convergence.

2.2 Problem description

The concept of transfer learning on DMN is demon-

strated for 2D RVEs with identical circular particles

embedded in the matrix phase. As shown in Figure 2,

we generate six RVEs with the volume fraction of par-

ticle phase vf2 equal to 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.

The nearest distance between the particles is explicitly

specified in the RVE generation algorithm [30] so that

the particles are about evenly distributed in the matrix.

Implicit FEM with conforming mesh is used to perform

the DNS. For all the RVEs, the ratio of the RVE size

to the mesh size is set to be 400, which guarantees that

there are at least three layers of element between any

two particles. For the RVE with vf2 = 0.6, there are

in total 199014 FE nodes and 198212 4-node 2D plane

strain elements. To reduce the RVE boundary effect,

periodic boundary conditions are used in our analysis.

In the offline stage, we generate 500 DNS samples

for each RVE. The first 400 samples are selected as

the training dataset, and the remaining 100 samples

become the test dataset. Three orthogonal loading cases

are needed to determine the 2D compliance matrix of

each sample. Since the materials are linear elastic, only

one loading step is required for each case. Performance

of the SGD training algorithm can be evaluated by the

training error etr and the test error ete. For a given

dataset, the error of its s-th sample es is calculated as

es =
||D̄dns

s − D̄
rve
s ||

||D̄dns
s ||

, (7)

and the average error of a dataset with S samples is

ē =
1

S

∑
s

es. (8)
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Fig. 2 DNS microstructures of particle-reinforced 2D RVEs
with the volume fraction of particle phase vf2 ranging from
0.1 to 0.6.

Matrix plasticity will be considered in the online

stage, while the particle phase remains elastic. The DNS

can be time-consuming due to the large amount of DOFs

involved in the full-field model. Therefore, it is neces-

sary to improve the efficiency of RVE analysis via model

reduction. In Section 5, we will demonstrate a materi-

als design example of toughness and ultimate tensile

strength, which is made possible by DMN and the pro-

posed transfer learning technique.

3 Transfer learning

3.1 Motivations

As a common practice, the fitting parameters of DMN

are initiated randomly in the optimization process. Since

the SGD algorithm converges to a band of local min-

ima close to the “global minimum” , the structure of

trained DMN strongly depends on the initial parame-

ters. Meanwhile, the stochasticity of SGD in choosing

the mini-batches also introduces uncertainty of the fi-

nal structure at the early stage of training. With ran-

dom initialization, the DMN databases trained for dif-

ferent RVEs are not analogous to each other in terms

of the topological structure, so that a continuous mi-

gration between different database can not be realized

through direct interpolation of the fitting parameters.

In this aspect, transfer learning of DMN is more ad-

vantageous as all the databases can be originated from

the same pre-trained database, and hence converge to

similar network structures. With the DMN interpola-

tion technique (see Section 3.4), we are able to gener-

ate a unified set of databases covering the full-range

structure-property relationship.
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Another motivation of transfer learning is to im-

prove the convergence of training by reusing the knowl-

edge from pre-trained networks. The benefit from model

transfer is usually more evident when the RVEs have

similar morphologies, which is exactly the case for our

particle-reinforced RVEs. In general, the learning of an

RVE with small particle volume fraction vf2 converges

faster and reaches a more compressed model, so that

we expect the knowledge of the dilute model can help

to ease the training of RVEs with denser particles.

3.2 A naive approach

Before going deep into transfer learning, let us first

present a naive approach to creating a continuous set of

DMN databases. It starts from a pre-trained network

of a base RVE and directly modifies the activations z

to achieve the targeted volume fraction for a new RVE.

This idea emerges from the observation that a trained

material network can accurately represent the volume

fraction of its corresponding DNS model.

Assume the volume fraction of particle phase of the

pre-trained network is vf
(b)
2 , and the targeted volume

fraction of the new database is vf
(t)
2 . Mathematically,

the activations are modified as

zj(t) =


1− vf (t)2

1− vf (b)2

a(zj(b)) if j is odd

vf
(t)
2

vf
(b)
2

a(zj(b)) if j is even

, (9)

where a is the ReLU activation function. Meanwhile,

all the rotation angles θ remains unaltered,

θ
k(t)
i = θ

k(b)
i . (10)

Although no extra training is required (pure extrapola-

tion). the accuracy of the naive approach is limited to

some extent, as will be shown in Section 4.2. Therefore,

instead of using it as the primary method for database

migration, we will adopt the naive approach mainly for

the initialization of transfer learning.

3.3 The transfer-learning strategy

The trained DMN of the dilute RVE with vf2 = 0.1

is selected as the starting point of transfer learning.

It is first transferred to an approximated model for

vf2 = 0.2 through the naive approach and then trained

with the DNS dataset of the RVE with vf2 = 0.2. The

new DMN database for vf2 = 0.2 obtained from this

transfer learning process can be further updated to gen-

erate the database for vf2 = 0.3 in the same manner.

By repeating these steps following the order below,

vf2 = 0.1→ 0.2→ 0.3→ 0.4→ 0.5→ 0.6,

the DMN databases for all the RVEs can be generated

on the same base with vf2 = 0.1.

The SGD algorithm remains the same for transfer

learning, except that all the compression operations, in-

cluding the node deletion and subtree merging, need to

be turned off to keep the network structure consistent

across different databases. In specific, the reordering

step in subtree merging may completely change the or-

der of the fitting parameters, and hence needs to be

avoided in the optimization for transfer learning. How-

ever, nodes can still be deactivated during the training,

and the number of active nodes in the bottom layer Na

would decrease in the progress of learning. There are

other possible paths to perform the transfer-learning

task. We start from the DMN for vf2 = 0.1 because it

is a better trained model with a more compressed struc-

ture, comparing to those for higher volume fractions. As

a result, its descendant networks have less chance to get

stuck in poor local minima during the optimization.

3.4 Database interpolation

The databases obtained from transfer learning can be

interpolated for intermediate volume fractions. To ease

the interpolation of activations z, databases for differ-

ent RVEs are modified so that they share the same total

weight W . Since the magnitude of the vector {a(zj)}
does not affect the physical properties of DMN, we can

scale the activations simultaneously to meet the crite-

rion:

z̃j =
W∑
i a(zi)

a(zj), (11)

where z̃j represents the activation after the scaling.

In this work, we use linear interpolation to determine

the intermediate values for both activations and rota-

tional angles. If the volume fractions of the two known

databases are given by vf
(0)
2 and vf

(1)
2 , the fitting pa-

rameters for a new database with the volume fraction

vf
(∗)
2 in the interval [vf

(0)
2 , vf

(1)
2 ] are given by

z̃j(∗) = N0a(z̃j(0)) + (1−N0)a(z̃j(1)) (12)

and

θ
k(∗)
i = N0θ

k(0)
i + (1−N0)θ

k(1)
i , (13)



6 Zeliang Liu et al.

where the linear interpolation function N0 is

N0 =
vf

(1)
2 − vf (∗)2

vf
(1)
2 − vf (0)2

. (14)

Note that the outputs of network will not transit lin-

early between two databases, and this is the main differ-

ence between the proposed database interpolation and

the direct interpolation of outputs (e.g. the compliance

matrices D̄
rve(0)

and D̄
rve(1)

). We expect the database

interpolation offers higher fidelity since each intermedi-

ate point is associated with a physical model based on

DMN. It is also possible to introduce other microstruc-

tural descriptors, such as the particle shapes, into the

sampling space, and the interpolation would become

multivariate in higher dimensions.

4 Results and Discussion

4.1 Training results from random initialization

Figure 3 shows the training results with random ini-

tialization of fitting parameters for all the RVEs. For

each network, the depth N is set to 8, so that there

are initially 128 active nodes in the bottom layer. After

10000 epochs of training, the average training errors ētr

of all six DMNs are reduced to be less than 1.0%. The

test dataset is further used to check the quality of a

fitted model, and it can be observed from Figure 3 (b)

that all the mean test errors ēte are also less than 1.0%,

indicating that there is no over-fitting issue. The maxi-

mum sample error appears at the dataset for vf = 0.6,

which is only ete = 2.7%. It is concluded that DMN

is capable of representing the particle-reinforced RVEs

with vf2 ranging from 0.1 to 0.6.

Treemaps of the trained DMNs are presented in Fig-

ure 3 (c), with the predicted vf2 and Na given under

each plot. Although the training dataset only contains

mechanical information, DMN is able to extract the

volume fraction accurately. The network for vf2 = 0.1

is the most compressed one, with only 35 active nodes

remained in the bottom layer. Training for higher vf2
appears to be less efficient. For vf2 = 0.6, the network

has 72 active nodes after the training, while its mean

test error is still more than twice the one for vf2 = 0.1.

Despite low training and test errors, the network struc-

tures for various vf2 are quite different from each other,

making it hard to find a smooth transition between the

databases.

4.2 Training results from transfer learning

We first evaluate the accuracy of the naive approach

based on the DMN for vf2 = 0.1 with no training, so

that it can be considered as an extrapolation problem

in terms of the volume fraction. Figure 4 shows the

errors on the test datasets of different RVEs. The pre-

diction accuracy decreases as vf2 moves way from 0.1.

At vf2 = 0.6, the mean relative error is around 17.9%,

while the maximum error reaches 44.0%. The large er-

rors are contributed by the data points with high con-

trast of properties between the two phases, for example,

the ratio between the elastic moduli could rise up to

1000 in the DoE (see Appendix B). In spite of its sim-

plicity, the naive approach still require SGD training to

further improve the accuracy.

The training results from the transfer learning strat-

egy described in Section 3.3 are shown in Figure 5. With

the knowledge of pre-trained network for vf2 = 0.1, the

convergence of learning for all the RVEs are greatly

improved, in the sense that less epochs are required to

attain a certain accuracy. For vf2 = 0.2, 0.3, 0.4, the

average training errors ētr are reduced to be less than

1.0% within only 100 epochs, while the trainings with

random initialization cost more than 1000 epochs as

we can see from Figure 3 (a). For vf2 = 0.6, the trans-

ferred network requires around 1800 epochs to reach

1% average training error, in contrast to nearly 10000

epochs with random initialization. By comparing Fig-

ure 5 (b) to Figure 3 (b), one can also observe that the

test error ete of DMN after 10000 epochs of training

becomes smaller for every RVE. The maximum sample

error across all the test datasets reduces from 2.7% to

1.8%.

Figure 5 (c) shows the treemaps of DMN for dif-

ferent RVEs, together with the predicted vf2 and Na.

Since all the compression operations are turned off dur-

ing transfer learning, the order of blocks are kept the

same during the training, while the block sizes vary with

the phase fractions. As all the networks are originated

from the one for vf2 = 0.1, their structures represented

by the treemaps are analogical to each other. More-

over, the trained networks are also more compressed

than those with random initialization. For example, the

transfer-learned DMN for vf2 = 0.6 has Na = 31, while

the previous one shown in Figure 3 (c) has Na = 72

after trained for the same number of epochs. Since the

computational complexity of DMN is proportional to

Na, we expect that the one from transfer learning will

be more than two times faster in both offline training

and online prediction stages.
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Fig. 3 Offline results based on random initialization of learning. The number of layers is N = 8. The predicted volume fraction
of particle phase vf2 and the number of active nodes in the bottom layer Na are provided under each plot in (c).
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Fig. 4 Distributions of errors on the test datasets from the
naive approach. The network for vf2 = 0.1 is chosen as the
base of migration.

4.3 Micromechanics: continuous structure-property

relationship

Here we apply the transfer learning technique to a clas-

sical micromechanics problem: determining the effect

of volume fraction on the elastic properties of matrix-

inclusion materials. With the DMN database interpola-

tion method, a continuous structure-property relation-

ship can be derived. The naive approach extrapolated

from vf2 = 0.1 is adopted to provide coarse predictions.

Meanwhile, two analytical micromechanics methods are

also evaluated: 1) the Mori-Tanaka method [31] and 2)

the self-consistent method [32]. Both methods extend

Eshelby’s solution [33] for a single inclusion to multi-

inclusion systems using mean-field theories.

For the existence of Eshelby’s solution in analytical

form, both phases are assumed to be isotropic linear

elastic in this study. The Young’s modulus and Pois-

son’s ratio of the matrix phase are

E1 = 1 MPa, ν1 = 0.3. (15)

Two cases are considered for the particle phase. For

hard particle phase, the elastic constants are

E2 = 1000 MPa, ν2 = 0.3. (16)

For soft particle phase, we have

E2 = 0.01 MPa, ν2 = 0.3. (17)

Although the material inputs fall in the DMN offline

sampling space, they don not appear as data points in

the training datasets.

The predictions of transverse elastic properties for

the 2D RVEs with hard and soft particles are presented
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0.1 0.2 0.3 0.4 0.5 0.6
Volume fraction vf2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e
er

ro
r
et
e
(%

)

(b) Distributions of test error ete.

!"# = 0.096, *+ = 35 !"# = 0.200, *+ = 34 !"# = 0.302, *+ = 34 !"# = 0.402, *+ = 34 !"# = 0.502, *+ = 31 !"# = 0.609, *+ = 31

(c) Treemaps of DMN after 10000 epochs of training.

Fig. 5 Transfer-learning results from the pre-trained network for vf2 = 0.1 and N = 8. The predicted volume fraction of
particle phase vf2 and the number of active nodes in the bottom layer Na are provided under each plot in (c).
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Fig. 6 Effects of vf2 on the overall elastic properties for RVEs with hard particles: E1 = 1 MPa and E2 = 1000 MPa.
Results predicted by transfer learning (solid), naive approach (dashed), Mori-Tanaka (dotted) and self-consistent (dash-dotted)
micromechanics methods are provided. DNS references are marked by ◦ and •, where the circles ◦ represent the results for
intermediate volume fractions not in the training set.
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Fig. 7 Effects of vf2 on the overall elastic properties for RVEs with soft particles: E1 = 1 MPa and E2 = 0.01 MPa.
Results predicted by transfer learning (solid), naive approach (dashed), Mori-Tanaka (dotted) and self-consistent (dash-dotted)
micromechanics methods are provided. DNS references are marked by ◦ and •, where the circles ◦ represent the results for
intermediate volume fractions not in the training set.

in Figure 6 and 7, respectively. Other than the RVEs

used for training, new RVEs with intermediate volume

fractions (e.g. vf2 = 0.15) are also generated and an-

alyzed by DNS. For both cases, DMNs from transfer

learning can accurately capture the effects of vf2 on

the transverse Young’s modulus and Poisson’s ratio in

DNS, including the interpolated points (shown as cir-

cles ◦ in the plots).

The Mori-Tanaka method predicts the modulus well

for small vf2, but its results diverge from DNS when vf2
becomes larger than 0.3. The self-consistent method ap-

pears to be least accurate. For soft particles, it drasti-

cally underestimates the modulus even for a dilute sys-

tem. The reason is because the self-consistent method

treats the whole material as the effective medium, which

is suitable for amorphous materials, but not for the

particle-reinforced RVEs where the overall properties

are dominated by the matrix phase. In this regard, one

may consider the generalized self-consistent scheme [34]

in which an inclusion is first surrounded by the matrix

material and then embedded in the effective medium.

It is noteworthy that the naive approach without

any training effort outcompetes both Mori-Tanaka and

self-consistent methods, suggesting that it can be treated

as an alternative to analytical micromechanics methods

for fast estimations. Other than the DMN with transfer

learning, all the methods miss the trends of transverse

Poisson’s ratio, especially for the RVEs with soft parti-

cles. One can also observe that the Poisson’s ratio has

more variation relative to its overall trend. To make the

interpolated curves from transfer learning smoother, we

can either increase the RVE size or average the homog-

enization data from multiple RVE realizations for each

volume fraction.

5 Design of material toughness and ultimate

tensile strength

Up to this point, we have demonstrated how to con-

struct the unified DMN databases through machine learn-

ing with knowledge transfer and use them to predict the

overall properties of an RVE with given volume fraction

and phase properties. In this section, the unified DMN

databases are further applied to the design of mate-

rial toughness and ultimate tensile strength for elasto-

plastic RVEs with failure. A common bottleneck of ma-

terials design is in the data generation process based on

DNS [13], whereas DMN provides a viable way of ac-

celerating the computation without compromising ac-

curacy for each design point. Once the output space is

constructed, one can then extract the Pareto frontier of

toughness and ultimate strength to guide the selection

of volume fraction and phase properties for materials

design.

5.1 Nonlinear plasticity

We will first extrapolate the DMNs to nonlinear RVEs

with matrix plasticity. The information of effective plas-

tic strain in the matrix will be further used to define the

failure criteria. Recall that each individual active node

in the bottom layer will be treated as a material point,

where the internal history-dependent variables (if any)
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are stored. The matrix properties in the elastic regime

are

E1 = 100 MPa, ν1 = 0.3. (18)

In the plastic regime, a von Mises yielding law is con-

sidered,

f1 = σ̄1 − σY
1 6 0, (19)

where σ̄1 is the equivalent stress. The yield stress σY
1 is

given by a piece-wise linear hardening law that depends

on the equivalent plastic strain εp1:

σY
1 (εp1) =

{
0.1 + 5εp1 εp1 ∈ [0, 0.008)

0.124 + 2εp1 εp1 ∈ [0.008,∞)
MPa. (20)

The particle phase is assumed to be isotropic linear

elastic with the Poisson’s ratio equal to 0.3,

ν2 = 0.3. (21)

Its Young’s modulus E2 is treated as a design parameter

that varies during the sampling.

Only uniaxial tension is considered in this paper,

and the loading step is set to a relatively small value

∆ε11 = 0.0004 for the accuracy of failure predictions.

Regarding DMN evaluations under more complex load-

ing conditions, interested readers are referred to [23].

Figure 8 shows the stress-strain curves given by DNS

and DMN with transfer learning under uniaxial tension

for vf2 = 0.2, 0.4, 0.6. Two particle moduli are investi-

gated: 1) Hard particles E2 = 5000 MPa; 2) Soft parti-

cles E2 = 2 MPa. For the RVE with hard particles and

vf2 = 0.6, the corresponding DMN slightly underesti-

mates the yielding stress, while for all the other cases

the DMN predictions agree with DNS results very well.

All the analyses contain 100 loading steps. A typical

DNS took about 1 hour 36 min on 10 CPUs, while the

DMN with Na = 35 only took 11.5 s on 1 CPU. This

improvement of efficiency enabled by DMN becomes

necessary for the materials design problem as will be

shown in Section 5.3,

5.2 Failure predictions

Based upon the effective plastic strain in the matrix

phase, we define that the composite RVE fails if any of

the two conditions is meet:

(a) 10% of the matrix phase has an effective plastic

strain εp1 above 0.07;

(b) The mean effective plastic strain in the matrix phase
ε̄p1 is above 0.05.

Note that no progressive damage model is included here,

and no failure is considered in the particle phase. Since

the distribution of εp1 is usually dispersed in a compos-

ite RVE, Criterion (a) is more often triggered (> 95%

) in the DoE procedure as will be presented in Sec-

tion 5.3. However, Criterion (b) is introduced mainly

for the completeness of the failure criteria. Although

not in our design space, an extreme case when Crite-

rion (b) should be used is that the RVE is consist of

pure matrix material and the field of εp1 is uniform. Ac-

cording to our study, it will only be triggered for RVEs

with high fractions of pore-like soft particles, where the

strain concentrations are accommodated mostly by the

particle phase.

Two variables are used to quantify the failure prop-

erties of an RVE. The ultimate tensile strength σTS is

defined as the maximum stress that an RVE can with-

stand under uniaxial tension loading,

σTS = max{σ11(ε11), ε11 ∈ [0, εf ]}, (22)

where εf is the failure strain. Additionally, the material

toughness UT is defined as the energy per unit volume

absorbed before material failure due to load in a fixed

loading direction. In the uniaxial tension loading case,

the material toughness is simply the area under a stress-

strain curve:

UT =

∫ εf

0

σ11dε11. (23)

The failure strain εf defined by Criterion (b) can be

directly computed by taking the weighted average of ef-

fective plastic strain in all the active nodes in a network.
However, Criterion (a) requires a smooth distribution

of the effective plastic strain, while the reduced DMN

model can only provide very discrete predictions based

on a small number of material points. Therefore, we

propose to fit the profile of effective plastic strain from

DMN to a continuous log-normal distribution, whose

probability density function is given by

fε(ε, s, b, η) =
1

sy
√

2π
exp

(
−1

2
(
ln y

s
)2
)

with

y =
ε− b
η

, (24)

where s is the shape parameter, and the distribution is

shifted and scaled by the parameters b and η, respec-

tively. We can then determine the critical point on the

fitted cumulative distribution function. The fitting pro-

cess may encounter some difficulties when the overall

deformation is small and all local strains εp1 are close to
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Fig. 8 Stress-strain curves given by DMN and DNS under uniaxial tension for RVEs with (a) hard or (b) soft particles. The
elastic modulus of the matrix phase is E1 = 100 MPa. Volume fractions of the particle phase vf2 are 0.2, 0.4 and 0.6.
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(b) RVE with vf2 = 0.4 loaded at ε11 = 0.020.

Fig. 9 Distributions of local effective plastic strain εp1 in the matrix phase given by DNS and DMN for two typical RVEs with
hard particles E2 = 5000 MPa. The DNS contour plot with color range [0.0, 0.2] is presented in each figure. The mean value

of effective plastic strain εp1 and the fraction P̃ of matrix phase with εp1 > 0.07 are also provided.

0. In these cases, the discrete distribution function will

be used instead. Fortunately, to our experience, the fit-

tings always converge well at the critical failure points.

Figure 9 shows the distributions of εp1 and the cor-

responding fitted log-normal functions from DNS and

DMN for two RVEs with vf2 = 0.2, 0.4, both rein-

forced by hard particles E2 = 5000 MPa. As we can

see from the figures, the DNS profiles can be captured

by the log-normal distributions. The DMNs accurately

predict the mean values of effective plastic strain. Al-

though the original distributions of εp1 from DMNs are

discrete with higher local densities, the fitted probabil-

ity density functions match the ones from DNS well,

especially for the tail properties which are important

for evaluating the failure Criterion (a).

Table 1 Ultimate tensile strength σTS (MPa) for RVEs with
different particle moduli E2 and volume fractions vf2.

E2 = 5000 MPa E2 = 2 MPa

vf2 0.2 0.4 0.6 0.2 0.4 0.6

DNS 0.275 0.298 0.417 0.244 0.228 0.207

DMN 0.278 0.302 0.381 0.246 0.230 0.198

Error +1.1% +1.3% -8.6% +0.8% +0.9% -4.3%

Table 2 Material toughness UT (KJ/m3) for RVEs with dif-
ferent particle moduli E2 and volume fractions vf2.

E2 = 5000 MPa E2 = 2 MPa

vf2 0.2 0.4 0.6 0.2 0.4 0.6

DNS 6.81 4.43 2.61 9.22 9.01 8.26

DMN 6.92 4.65 2.58 9.01 8.83 7.27

Error +1.6% +5.0% -1.1% -2.3% -2.0% -12.2%
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Results of ultimate tensile strength and toughness

from DMN for all the RVEs evaluated in Figure 8 are

summarized in Table 1 and 2, respectively. Note that all

DNS results, including those in Figure 9, are calculated

based on the original discrete distribution without log-

normal fitting. The relative errors of DMN to the DNS

results are also provided. One can observe from the ta-

bles that the approximation errors of σTS and UT are

small for low volume fractions vf2 = 0.2 and 0.4, while

the errors increase to around 10% at vf2 = 0.6. Nev-

ertheless, the DMN method correctly predicts the de-

pendences of σTS and UT on the particle modulus and

volume fraction. For a constant E2 at 5000 MPa, the

ultimate tensile strength increases with vf2, while the

trend reverses for soft particles with E2 = 2 MPa. In

both cases, the material toughness decreases with vf2.

For the same microstructure with a constant vf2, the

RVE with hard particles typically yields higher ultimate

tensile strength, but loses the toughness since it may fail

at a lower strain. Recall that these analyses are very

challenging because the RVE failure depends on highly

localized deformations. The combination of DMN and

the profile fitting strategy provides an optimal way of

both capturing the global stress-strain responses and re-

producing the local information accurately with much

less discretization points.

5.3 Materials informatics

Finally, we apply the DMNs with transfer learning to

a multi-objective design problem for finding the Pareto

frontier of the material toughness and ultimate tensile

strength. The design parameters are the modulus E2

and volume fraction vf2 of the particle phase consider-

ing 3000 points with the following bounds:

E2 = [1, 10000] MPa, vf2 = [0.10, 0.60]. (25)

DoE based on Monte Carlo sampling is used to explore

the design space.

The Pareto frontier is a set of data points that are

“Pareto efficient”. It provides all the potential opti-

mal design solutions that one can focus on to maxi-

mize the toughness and ultimate tensile strength with-

out searching the whole design space. Mathematically,

a data point X = {E′2, vf ′2} is defined to be Pareto

efficient if there does not exist such a point X ′′ =

{E′′2 , vf ′′2 } (X ′′ 6= X ′) that the conditions

σTS(X ′′) > σTS(X ′) and UT (X ′′) > UT (X ′)

are both satisfied.

Figure 10 presents the contour plots of material

toughness and ultimate tensile strength in the design

space defined by Eq. (25). The Pareto efficient points

are marked by black dots on the plots. As we can see

from Figure 10, the region with high toughness locates

around E2/E1 = 0.02. High ultimate tensile strength

typically appears at the region with vf2 > 0.5. As long

as the particle phase is harder than the matrix phase

E2 > E1, increasing the modulus of particles could not

effectively improve the ultimate tensile strength.

Figure 11 shows the output space for all 3000 DoE

points, where the Pareto frontier is highlighted by the

red dashed line. Interestingly, a large amount of output

points are concentrated along a line different from the

Pareto frontier. These points are found to be mostly

from RVEs with hard particles E2/E1 > 5, indicating

that the failure properties are not sensitive to the mod-

ulus of the hard reinforcing particles. One can also ob-

serve a transition point with a good trade-off between

ultimate tensile strength and toughness at σTS = 0.32

MPa and UT = 7.86 KJ/m3, and its design parameters

are E2 = 9.62 MPa and vf2 = 0.51. With the large

amount of data generated by DMN, it is possible to fit

a machine learning model (e.g. Gaussian process regres-

sion, neural network) for inverse design of microstruc-

tures, which will be investigated in our future work.

The computational times for DNS and DMN in the

offline and online stages are summarized in Table 3. All

the calculations are evaluated on 10 Intel® Xeon®
E5-2640 CPUs. The DNS analyses are performed us-

ing the RVE package based on implicit finite element

method in LS-DYNA®. Python libraries are developed

for the offline training and online prediction of DMN.

Due to the large computational time required by DNS,

the prediction stage based on DNS is not feasible and

the time is estimated by multiplying the single simula-

tion time by the number of DoE points. Note that the

preprocessing time (e.g. microstructure and mesh gen-

eration) is not included, but it will become nontrivial if

the RVE morphology is very complex.

In DMN, the most time-consuming part is the offline

sampling using DNS, which took 71 h 30 min for 6

RVEs with 500 data points per RVE, or 3000 points in

total. The offline training based on the transfer learning

strategy in Section 3.3 took 12 h 40 min (10000 epochs

for each RVE). Fortunately, the offline stage only needs

to be performed once, and the created DMN databases

can be extrapolated to various material and loading

spaces. By virtue of the efficiency of DMN, its online

prediction stage for 3000 DoE points was completed in

38 min.
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Fig. 10 Contour plots of material toughness and ultimate tensile strength as a function of two design parameters E2 and vf2.
The black dots represent the design points on the Pareto frontier.

Table 3 Computational times for DMN with transfer learning and DNS on 10 Intel® Xeon® E5-2640 CPUs.

Offline stage for 6 RVEs
Prediction stage (3000 DoE points)

Sampling (3000 data points) Training (60000 epochs)

DNS 0 0 ≈ 3000 h (N/A)

DMN 71 h 30 min 12 h 40 min 38 min
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Fig. 11 Output space of material toughness and ultimate
tensile strength for a population of 3000 design points from
DMN extrapolation. The Pareto frontier is highlighted by the
dashed line.

6 Conclusions

In this paper, we have proposed the transfer learn-

ing strategy of DMN for structure-property predictions.

The knowledge of a pre-trained network is stored and

then reused to generate the initial structure for a new

RVE through a naive approach. For a set of multiple

2D particle-reinforced RVEs with different phase vol-

ume fractions, it is demonstrated that the accuracy and

learning convergence can be greatly improved based on

the pre-trained DMN with the most compressed struc-

ture (vf2 = 0.1).

Since the databases created from transfer learning

share the same base structure, intermediate databases

can be generated by interpolating the fitting parame-

ters. The unified databases show encouraging microme-

chanical results of predicting the volume fraction effect

on elastic properties, and the idea of database inter-

polation opens the possibility of incorporating multi-

ple microstructural descriptors to derive a more gen-

eral design map. Interestingly, the naive approach with-

out SGD training also outperforms the Mori-Tanaka

and self-consistent micromechanics methods, suggest-

ing that it can be a good alternative for fast evaluation

of unknown RVEs.

The DMN databases are further extrapolated to

simulate nonlinear elasto-plastic RVEs, whose failure

criteria are defined upon the distribution of local effec-

tive plastic strain. With the proposed log-normal fitting

procedure, their predictions on the failure properties are

shown to be accurate compared to the expensive DNS

results for various RVEs. Importantly, the efficiency of

DMN enables us to generate a large output space for

a multi-objective materials design problem: extracting

the Pareto frontier of the material toughness and ul-

timate tensile strength from 3000 DoE points. From

our perspective, it is promising to use the DMN frame-

work with transfer learning in a broad class of materials
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design problems where reliable and efficient structure-

property relationships are desired.
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Appendix A Analytical solutions of 2D

building block

The 2D DMN framework is originally proposed in our

previous work [23]. Analytical solutions are available for

the two-layer structure shown in the dashed box within

Figure 1, which are derived based on the equilibrium

condition

σ1
2 = σ2

2 , σ1
3 = σ2

3 , (A.1)

and kinematic constraint

ε11 = ε21, (A.2)

with direction 1 tangential to the interface between the

two materials and direction 2 orthogonal to direction 1.

Expressions of the components in the compliance ma-

trix D̄
r

after the homogenization operations are

D̄r
11 =

1

Γ
(D1

11D
2
11), (A.3)

D̄r
12 =

1

Γ
(f1D

1
12D

2
11 + f2D

2
12D

1
11),

D̄r
13 =

1

Γ
(f1D

1
13D

2
11 + f2D

2
13D

1
11),

D̄r
22 = f1D

1
22 + f2D

2
22 −

1

Γ
f1f2(D1

12 −D2
12)2,

D̄r
23 = f1D

1
23 +f2D

2
23−

1

Γ
f1f2(D1

13−D2
13)(D1

12−D2
12),

D̄r
33 = f1D

1
33 + f2D

2
33 −

1

Γ
f1f2(D1

13 −D2
13)2,

where

Γ = f1D
2
11 + f2D

1
11 and f2 = 1− f1.

After the homogenization operation, the two-layer

structure is rotated. The matrix R defines the rota-

tion of a second-order tensor through the angle θ under

Mandel notation,

R(θ) =


cos2 θ sin2 θ

√
2 sin θ cos θ

sin2 θ cos2 θ −
√

2 sin θ cos θ

−
√

2 sin θ cos θ
√

2 sin θ cos θ cos2 θ − sin2 θ

 .

(A.4)

After the rotation operation, the new compliance ma-

trix D̄ is obtained as

D̄ = g(D̄
r
, θ) = R(−θ)D̄r

R(θ). (A.5)

In the global network structure, it will become the input

of another building block in the upper level.

Similarly, the analytical forms of the residual strain

δε̄r after the homogenization operation are

δε̄r11 =
1

Γ
(f1D

2
11δε

1
11 + f2D

1
11δε

2
11), (A.6)

δε̄r22 = f1δε
1
22+f2δε

2
22−

1

Γ
f1f2(D1

12−D2
12)(δε111−δε211),

δε̄r12 = f1δε
1
12+f2δε

2
12−

1

Γ
f1f2(D1

13−D2
13)(δε111−δε211).

The overall residual strain δε̄ after the rotation opera-

tion is given by

δε̄ = R(−θ)δε̄r. (A.7)

Appendix B Design of experiments for DMN

training

For the two-phase RVE, the elastic compliance matrices

of the two materials are denoted by Dp1 and Dp2. Both

materials are assumed to be orthotropic linear elastic

during the sampling. Therefore, each material has four

independent design variables: E11, E22, ν12 and G12.

The compliance matrices in Mandel notation can be

expressed as

Dp1 =


1/Ep1

11 −νp112/Ep1
22

1/Ep1
22

1/(2Gp1
12)

 (B.1)

and

Dp2 =


1/Ep2

11 −νp212/Ep2
22

1/Ep2
22

1/(2Gp2
12)

 .

To remove the redundancy due to the scaling effect, we

have

Ep1
11E

p1
22 = 1, log10(Ep2

11E
p2
22 ) ∈ U [−6, 6]. (B.2)

The other variables are selected randomly as

log10(Ep1
22/E

p1
11 ) ∈ U [−1, 1], log10(Ep2

22/E
p2
11 ) ∈ U [−1, 1],

Gp1
12√

Ep1
22E

p1
11

∈ U [0.25, 0.5],
Gp2

12√
Ep2

22E
p2
11

∈ U [0.25, 0.5],
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where U represents the uniform distribution. The Pois-

son’s ratios are selected to guarantee that the compli-

ance matrices are always positive definite,

νp112√
Ep1

22/E
p1
11

∈ U [0.3, 0.7],
νp212√

Ep2
22/E

p2
11

∈ U [0.3, 0.7].

Design of experiments are performed based on the Monte

Carlo sampling.
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