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This class

• Deep Material Network: Describing multiscale materials by a multi-layer 
network structure and mechanistic building blocks

• Physics-based building block: Two-layer structure with interpretable fitting 
parameters

• Machine Learning: Offline sampling, training and online extrapolation

• Applications: Hyperelastic rubber composite under large deformation, 
polycrystalline materials with rate-dependent crystal plasticity and CFRPs

• Summary and future work
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Multiscale mechanics and physics of materials

Multiscale nature of modern engineering materials

Structural analysis Manufacturing Materials Design

Representative Volume Element (RVE) and Homogenization

Complex Behaviors induced 
by micro-structures

Material evolutions 
during processing

Multiscale Physics 
for design purpose



© 2019 LSTC

Microstructural anisotropy induced by manufacturing

Injection molding Additive manufacturing

EBSD images from 
uni- and bi-directional scans

Metal forming

https://materials.imdea.org

Lian et al., Materials and 
Design 2019
Parimi et al., Materials 
Characterization 2014
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Current modeling techniques and challenges

Accuracy
Efficiency

❑ Objectives: Arbitrary morphology, material nonlinearity (ex. plasticity, damage), 

geometric nonlinearities (ex. large deformations).

❑ Applications: Concurrent multiscale simulation, materials design …

Direct numerical simulation (DNS)

• Finite element (LSDYNA RVE Package)

• Meshfree and particle methods

• FFT-based method…

Analytical micromechanics methods

• Voigt and Reuss bounds

• Mori-Tanaka method (most popular)

• Self-consistent method…
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Machine learning in materials modeling 

• Eigen-decomposition: SVD, PCA, POD ….

• Clustering analysis: Self-consistent clustering analysis ….

• (Deep) neural network: CNN, LSTM, Autoencoder …

Yvonnet and He, JCP 2007; 
Oliver et al., CMAME 2018;

Liu et al., CMAME 2016 
Liu et al., CMAME 2018
Tang et al., Comput. Mech. 2018
Yu et al., CMAME 2019

Ghaboussi et al., JEM 1991
Unger and Konke, Comput. Struct. 2008
Le et al., IJNME 2015
Bessa et al., CMAME 2017
Wand and Sun, CMAME 2018
Li et al., Comput. Mech. 2019
Huang et al. arXiv 2019
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Key issues: Lack of data and danger of extrapolation

Dangers of extrapolation

Offline training data 

1. Unknown material: 2. Unknown loading path:

𝜀

𝜎

Elasticity

Plasticity

Rate-dependency

𝜀11

𝜀22

The training data is usually limited 
due to the cost of physical or 
numerical experiments.

New path
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The initial idea of Deep Material Network (DMN)

𝐂𝑝1 𝐂𝑝2

ҧ𝐂𝑟𝑣𝑒Input: microscale stiffness tensor 𝐂𝑝1, 𝐂𝑝2

Output: overall stiffness tensor ത𝐂𝑟𝑣𝑒
Building blocks

𝑥1

𝑥2

𝑥3

𝑦

𝑦 = 𝑎 

𝑖=1

𝑛

𝑤𝑖𝑥𝑖

𝑤1

𝑤2

𝑤3

How to embed mechanics/physics into the 
building block in a network structure?

Neural network

[1] Z. Liu, C.T. Wu, M. Koishi, CMAME 345 (2019): 
1138-1168. 
[2] Z. Liu, C.T. Wu, JMPS 127 (2019): 20-46. 
[3] Z. Liu, C.T. Wu, M. Koishi, Computational 
Mechanics (2019)
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Physics-based building block in 2D

Material 1: ത𝐂1, 𝑤1

Material 2: ത𝐂2, 𝑤2

1

Rotation 𝜃

𝐂

2

ത𝐂

Homogenization 𝑤1, 𝑤2

• Interfacial equilibrium conditions:  

• Interfacial kinematic constraints:  

Existence of 
analytical solutions

Automatic differentiation

• Weights 𝑤1, 𝑤2 are determined by the activations in the bottom layer
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Physics-based building block in 3D

Material 1: ത𝐂1, 𝑤1

Material 2: ത𝐂2, 𝑤2

1

2

Rotation 𝛼, 𝛽, 𝛾

𝐂

3

ത𝐂

Homogenization 𝑤1, 𝑤2

• Interfacial equilibrium conditions:  

• Interfacial kinematic constraints:  

Existence of 
analytical solutions

Automatic differentiation

• Weights 𝑤1, 𝑤2 are determined by the activations in the bottom layer
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Weights in building block are propagated from activations
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Global framework: Offline and online stages
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Offline sampling on inputs and DNS RVE analysis

• Strong material anisotropy and phase contrast

• Analyzed using LS-DYNA RVE package 

Design of Experiments (DoE)

Sample the compliance matrices of material 1 and 2: 
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Offline sampling on inputs and DNS RVE analysis

• Strong material anisotropy and phase contrast

• Analyzed using LS-DYNA RVE package 

Design of Experiments (DoE)
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Offline machine learning: Cost function and SGD

Stochastic Gradient 
Descent (SGD)

Automatic network 
compression

Cost function for training

Backpropagation

Regularization
term
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Deletion of node

1

2

3 4

… … …

1

3 4

… … …

𝑓(2) = 1

➢ Delete node 2, if 𝑓2 = 1 Subtree merging

1

2 2′

3 4

… … …

3′ 4′

… … …

1

2

3 4

… … …
➢ Merge subtrees 𝑇{2,3,4,… } and 𝑇′{2′, 3′, 4′, … }

𝑇{2,3,4,… }
≈ 𝑇′{2′, 3′, 4′, … }

❑ Network is reordered before the 
compression.

❑ Network compression operations are 
performed every 10 epochs.

Automatic network compression and parameter reduction
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Online extrapolation to unknown materials and loadings 

Online stage:     Δ𝐏 = 𝐀: Δ𝐅 + 𝛿𝐏

Offline stage:     Δ𝝈 = 𝐂: Δ𝛆
Linear elasticity:

No iteration needed

Material and geometric 
Nonlinearity:

Newton’s iterations
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Data transfer in the online stage (finite-strain) 

Step 1: Microscale material law evaluations

Step 2: Propagation of 
stiffness matrix 𝐀 and 
residual stress 𝛿𝐏

Step 3: Macroscale 
boundary condition 
evaluation

Step 4: Propagation of 
deformation gradient Δ𝐏
and stress Δ𝐅

“Computational cost” = 𝑶 𝑵𝒅𝒐𝒇

𝑵𝒅𝒐𝒇 = 𝟖
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Applications to 2D and 3D RVEs 

2D materials:
• Mooney-Rivlin hyperelasticity

• Von Mises plasticity

3D materials:
• Mooney-Rivlin hyperelasticity with Mullins effect

• Von Mises plasticity

• Rate-dependent crystal plasticity 

[1] Z. Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168.

[2] Z. Liu, C.T. Wu. JMPS 127 (2019): 20-46. 

https://www.sciencedirect.com/science/article/pii/S0045782518304729
https://www.sciencedirect.com/science/article/pii/S0022509618310688
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𝑁 = 5

𝑁 = 7

* Treemaps: nested rectangles for displaying hierarchical structure 
Videos

2D materials: Evolutions of topological structures

https://en.wikipedia.org/wiki/Treemapping
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Training dataset (200):  Validation dataset (100): 

• The maximum stiffness contrast between material phases can go up to 104.
• No overfitting is observed (low validation error). 

2D materials: Training histories of average relative errors
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Error distribution of trained network (N=7) on trained dataset

• For each RVE, the maximum error within the 200 samples is below 2.5%. 
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𝑁 = 3

𝑁 = 5

𝑁 = 7

Geometric info is learned accurately from mechanical property data

Topological structures of 2D trained networks
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Extrapolations to unknown material and loading paths

Loading-unloading path

Complex loading path

Von Mises plasticity
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3D hyperelastic rubber composite with mullin effect

DNS FE model: 84693 nodes and 59628 10-node tetrahedron
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DMN with N=6 performs better than the linear FE model  

DNS FE model: 84693 nodes and 59628 10-node tetrahedron

Linear FE model: 11236 nodes and 59628 4-node tetrahedron
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DMN learns the hidden volume-fraction info accurately

Treemap plot of DMN: Visualization of the binary-tree structure
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Online extrapolation for rubber composite with damage

• Matrix: Mooney-Rivlin hyperelastic rubber with Mullins effect.
• Particle: Neo-Hookean material which is 100 times harder than the matrix.
• Large deformation: uniaxial tension up to 50%.
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Offline and online computational cost

“Computational cost” = 𝑶 𝑵𝒅𝒐𝒇

* Numerical tests are performed on Intel Xeon E5-2640 processor
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Application to polycrystal materials

https://materials.imdea.org

Schematic of rolling process on a plate 
• Macroscale empirical law is not 

sufficient to describe the 
anisotropic material behavior 
under large deformation

• Direct numerical simulation 
(DNS) of the whole polycrystal 
structure is prohibited due to 
large computation cost.

Solution: Reduced order modeling of polycrystal RVE using deep material network

e.g. 45x45x45 FEM mesh

Model reduction /
Machine Learning

Deep material network (N=4)

𝐂𝑠𝑖𝑛𝑔𝑙𝑒

ҧ𝐂𝑟𝑣𝑒
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Polycrystal materials with crystal plasticity

DNS model: 415 grains, 45 × 45 × 45 mesh, 91125 elements 
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Training results after 20000 epochs
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Training histories of rves with random and textured odfs

RVE with Random ODF RVE with textured ODF
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Learning the grain orientations polycrystal materials

Pole figures of DNS (hidden in data)

In training …

After 20000 epochs, 

DMN with 𝐍 = 𝟖
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Constitutive law: Rate-dependent crystal plasticity

Deformation gradient

𝐅 = 𝑑𝒙
𝑑𝑿

Decomposition of deformation:

Evolution of plastic deformation:

ሶ𝐅𝑝 = 𝐋𝑝 ∙ 𝐅𝑝

𝐋𝑝 = 

𝛼=1

𝑁𝑠𝑙𝑖𝑝

ሶ𝛾𝛼(𝐬𝛼 ⊗𝐦𝛼)

Plastic velocity gradient

ሶ𝛾𝛼 : shear rate on slip system 𝛼
𝐦𝛼: slip plane normal
𝐬𝛼: slip direction

Drag stress:

Back stress:

Flow rule (power law [1]):

Hardening rule (hardening/recovery law [1]):

𝜒, H, R, h and r are material parameters.

Many constitutive laws has been proposed. The 
following is a phenomenon based one.

[1] McGinty, R. D. (2002). Multiscale representation of polycrystalline inelasticity. PhD thesis, Georgia Tech.
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Online stage of DMN with rate-dependent crystal plasticity

FFT-based DNS:                          13 hours (46800s).
FEM-based DNS:                        130 hours (468000s).
Material network with N = 6:  140s. 
Material network with N = 8: 560s. 
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More than two scales?  Network concatenation 

Carbon fiber reinforced polymer (CFRP)
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Trained networks for UD composites

𝑣𝑓1 = 29.4%
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Trained networks for woven composites

𝑣𝑓1 = 41.4%
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Three scales vs. Two scales

Two Scales:    The yarn phase in woven composite is elastic

Three Scales: The yarn phase in woven composite is informed by DMN of UD composite 
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• Deep material networks: 

o 2D and 3D building blocks

o Hierarchical topological structure. 

• A complete machine learning procedure based on offline numerical DNS data or 
experimental testing data.

• Efficient and accurate extrapolation for challenging RVE homogenization problems:

o Nonlinear history-dependent plasticity

o Finite-strain hyperelasticity under large deformations.

o Crystal plasticity

• Parallel computing (CPU)

• Building blocks with multiple layers / multiple phases

• Interfacial effect : debonding in CFRP, grain boundary effect …

• Integration with design framework

• Concurrent multiscale simulations enhanced by AI/deep material 
network.

• GPU computing

Future opportunities

Summary
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Thank you!


