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This class

* Deep Material Network: Describing multiscale materials by a multi-layer
network structure and mechanistic building blocks

* Physics-based building block: Two-layer structure with interpretable fitting
parameters

* Machine Learning: Offline sampling, training and online extrapolation

* Applications: Hyperelastic rubber composite under large deformation,
polycrystalline materials with rate-dependent crystal plasticity and CFRPs

 Summary and future work
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LSTC  Multiscale mechanics and physics of materials
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Multiscale nature of modern engineering materials

Structural analysis Manufacturing Materials Design

e

Representative Volume Element (RVE) and Homogenization

~ | ™~

Complex Behaviors induced Material evolutions Multiscale Physics
by micro-structures during processing for design purpose
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LSTC  Microstructural anisotropy induced by manufacturing
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Injection molding Additive manufacturing
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@LSTC Current modeling techniques and challenges

 Objectives: Arbitrary morphology, material nonlinearity (ex. plasticity, damage),

geometric nonlinearities (ex. large deformations).

O Applications: Concurrent multiscale simulation, materials design ...

"

Direct numerical simulation (DNS) Analytical micromechanics methods
* Finite element (LSDYNA RVE Package) * Voigt and Reuss bounds

* Meshfree and particle methods * Mori-Tanaka method (most popular)
* FFT-based method... * Self-consistent method...

© 2019 LSTC
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Machine learning in materials modeling

Yvonnet and He, JCP 2007;
Oliver et al., CMAME 2018;

Liu et al., CMAME 2016
Liu et al., CMAME 2018

Tang et al., Comput. Mech. 2018

Yu et al., CMAME 2019

(Deep) neural network: CNN, LSTM, Autoencoder ...

© 2019 LSTC
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Key issues: Lack of data and danger of extrapolation

The training data is usually limited
due to the cost of physical or
numerical experiments.

1. Unknown material:

ot -
-7 - Rate-dependency
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/ _ -, Plasticity
/

Elasticity

v
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Dangers of extrapolation

B

Offline training data

2. Unknown loading path:
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@LSTC The initial idea of Deep Material Network (DMN)

Input: microscale stiffness tensor CP1, CP?

Output: overall stiffness tensor C"™¢

How to embed mechanics/physics into the
building block in a network structure?

[1] Z. Liu, C.T. Wu, M. Koishi, CMAME 345 (2019):
1138-1168.

[2] Z. Liu, C.T. Wu, JMPS 127 (2019): 20-46.

[3] Z. Liu, C.T. Wu, M. Koishi, Computational
Mechanics (2019)
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Physics-based building block in 2D

L

Material 1: C1, w1

Material 2: C2, w?

Interfacial equilibrium conditions:

1 2

Rotation ()

©

Homogenization (w!, w?)

0y = 05, 03 = 03

Interfacial kinematic constraints:

« Weights (W, w?) are determined by the activations in the bottom layer

© 2019 LSTC

Existence of

analytical solutions

v

Automatic differentiation
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@LSTC Physics-based building block in 3D

Rotation (a, f,y)

2 Material 2: C2, w?
. Homogenization (w!, w?)

* Interfacial equilibrium conditions:

Material 1: C1, w1

N

1 _ 42 1 2
03 =03, Oy

|
N
2
|
2

* |nterfacial kinematic constraints:

1.2 1.2 1.2
€1 =871, & =¢&, &g==¢&;

« Weights (W, w?) are determined by the activations in the bottom layer

Existence of
analytical solutions

v

Automatic differentiation
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@LSTC Weights in building block are propagated from activations

Activations

Zl

2
z-

Wy

wiy

ReLLU

Bottom layer N

= a(z?)
= a(z?)

4

ba(x) = x

a(x) 3

(b) Data flow of weights.

Fitting parameters
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@LSTC Global framework: Offline and online stages

OFFLINE

Test dataset

Design of Experiments Training dataset

* Elastic phase DNS * Sample s
properties {Cfl, sz; (_:gns}
* Loading conditions St ——

\ 4

Inputs  Output

Mechanistic machine learning

ONLINE

Nonlinear properties Extrapolation

Physical parameters:

Z;a Db,y

* Hyperelasticity
* ]2 Plasticity
* Crystal plasticity

* Material design
* Concurrent
simulations

Microstructural database

Figure 1: Global framework of deep material network illustrated for a 3D two-phase RVE. The stiffness matrices of the two

microscale phases are Cgl and 052, and ans is the overall stiffness matrices generated by DNS of RVE homogenization.
Fitting parameters of DMN include activation z and rotation angles (a, 3,7).

© 2019 LSTC
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OFFLINE

Offline sampling on inputs and DNS RVE analysis

RVE mesh

Design of Experiments

* Elastic phase

properties

* Loading conditions

D" =«

© 2019 LSTC
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Design of Experiments (DoE)

* Strong material anisotropy and phase contrast
* Analyzed using LS-DYNA RVE package

Sample the compliance matrices of material 1 and 2:
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LSTC  Offline sampling on inputs and DNS RVE analysis
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OFFLINE Design of Experiments (DoE)

RVE mesh Design of Experiments

|+ Elastic phase * Strong material anisotropy and phase contrast
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(a) Anisotropy of phase 1. (b) Contrasts of moduli between phase 1 and 2.

Figure 4: Distributions of tension moduli in the training and test datasets for the particle-reinforced RVE. Plots for other
material systems are similar, and there are 400 training samples (o) and 100 test samples (¥). The theoretical bounds are
shown as the dashed lines.
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LSTC  Offline machine learning: Cost function and SGD

Cost function for training

J(z,a,8,7) =

with

2N

|G — £y (CPL,CP2, 2, a0, B,7) |2

Jo(z, 0, 3,7) =

Backpropagation

Stochastic Gradient
Descent (SGD)

Automatic network
compression

© 2019 LSTC
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for a two-phase RVE,

Epoch = 0, vfl =0.52




LSTC  Automatic network compression and parameter reduction
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S92

Deletion of node

J Network is reordered before the
compression.

O Network compression operations are
performed every 10 epochs.

» Delete node 2,if f, =1 Subtree merging

T{2,3/4,...}
~ T,{ZI, 31, 41, ."}

> Merge subtrees T{2,3,4,...} and T'{2',3",4/, ...}

© 2019 LSTC



LSTC  Online extrapolation to unknown materials and loadings
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Offline stage: Ao = C:Ae

Linear elasticity:

'] Ie k . o
Building block B; No iteration needed

Rotation: C{-‘ = rc(Ci-",ai", ;k »l’ik )

oot ok ~2k-1 @2k . 2k-1 2k
Homogenization: C; —f)c(ci+1 ,Cir Wity ,wi+1,...)

OFFLINE

Material and geometric

Online stage: AP = A: AF + 6P Nonlinearity:
Newton’s iterations
Building block B¥
Rotation: K'ic = ERA(l‘lf» af, B, v )

P = Rp (8P, af', Bl i)

ation: AF = A2k-1 a2k . 2k-1 . 2k
Homogenization: Aj —IH'A(AHI JAT L Wi ,wi+1,...)

k _ <p2k—1 ¢opZ2k 2k-1 2k
6P = 3p(8PA, 6P, wHT L Wil )

Aok, SR 5P ONLINE
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@LSTC Data transfer in the online stage (finite-strain)

Step 3: Macroscale
boundary condition
evaluation

Step 4: Propagation of
deformation gradient AP
and stress AF

Step 2: Propagation of
stiffness matrix A and
residual stress 6P

“Computational cost” = O(N dof)

© 2019 LSTC



2D materials:

LSTC  Applicationsto 2D and 3D RVEs
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Mooney-Rivlin hyperelasticity
Von Mises plasticity

(b) Matrix-inclusion (c) Amorphous (d) Anisotropic

[1] Z. Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168.

3D materials:

© 2019 LSTC

Mooney-Rivlin hyperelasticity with Mullins effect
Von Mises plasticity
Rate-dependent crystal plasticity [2] Z. Liu, C.T. Wu. JMPS 127 (2019): 20-46.

— 0
vfy = 22.6% ofs = 2949%

UD composite
(Microscale)

Woven composite

= 4149
(Mesoscale) pit %



https://www.sciencedirect.com/science/article/pii/S0045782518304729
https://www.sciencedirect.com/science/article/pii/S0022509618310688

2D materials: Evolutions of topological structures

Epoch= 0, vfl =048
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Epoch = 0, vfl = 0.50

Videos

* Treemaps: nested rectangles for displaying hierarchical structure

© 2019 LSTC


https://en.wikipedia.org/wiki/Treemapping

LSTC 2D materials: Training histories of average relative errors

A Livermore Software

Training dataset (200): —  Validation dataset (100): — -
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* The maximum stiffness contrast between material phases can go up to 10%.

* No overfitting is observed (low validation error).
© 2019 LSTC
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Error distribution of trained network (N=7) on trained dataset
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Relative error

Relative error

For each RVE, the maximum error within the 200 samples is below 2.5%.



LSTC  Topological structures of 2D trained networks
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vfl = 0.30 vfl = 0.53

Geometric info is learned accurately from mechanical property data

© 2019 LSTC



LSTC

Livermore Software
Technology Corp.

Extrapolations to unknown material and loading paths

i P

Von Mises plasticity

Loading-unloading path
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LSTC 3D hyperelastic rubber composite with mullin effect
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DNS FE model: 84693 nodes and 59628 10-node tetrahedron

Vfl = 22.6%

= Rubber phase

(9]

=== Particle phase

K

01

1.0 1.1 1.2 1.3 1.4 1.5
ki

(a) Geometry and mesh. (b) Uniaxial responses of individual phases (online).

Figure 7: Particle reinforced RVE: (a) The volume fraction of the particle phase is 22.6% and the FE model has 84693 nodes and
59628 10-node tetrahedron elements; (b) In the online extrapolation stage, the matrix phase is considered as a Mooney-Rivlin
hyperelastic rubber with Mullins effect and the particle is a Neo-Hookean material which is 100 times harder than the matrix.

© 2019 LSTC



LSTC  DMN with N=6 performs better than the linear FE model
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i P

DNS FE model: 84693 nodes and 59628 10-node tetrahedron

Linear FE model: 11236 nodes and 59628 4-node tetrahedron

100_

107" 5

Average error
Test error e'*

0.050 1

LA PEY

0.000 —
10° 10! 107 103 10* N =4 N
Epoch

1072 _

N =6 N—8 Linear FEM

Il
[l

(a) Training histories. (b) Distributions of test error et¢.

Figure 8: Error histories and distribution of DMN for the particle reinforced composite. In (a), the histories of the average
training and test errors are denoted by solid and dashed lines, respectively. In (b), the distributions of test error are shown for
trained DMNs with various depths (black), and the test result of the linear FE model (blue) is also provided for comparison.

© 2019 LSTC



Table 1: Training results of the particle-reinforced composite. Average training error
error and predicted volume fraction v f, are provided for each DMN. Test errors of the linear FEM model are also shown.

(a) N=4,N, =4,vf; = 0.211

© 2019 LSTC

LSTC
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DMN learns the hidden volume-fraction info accurately

tr

, average test error "

Epochs Training &' Test ¢ Maximum e.* : vfi
N =4 20000 7.61% 7.79% 17.9% I 0.211 (-6.63%)
N =5 20000 4.47% 4.49% 8.94% : 0.220 (-2.65%)
N =6 20000 1.34% 1.39% 4.46% : 0.220 (-2.65%)
N =8 40000 0.53% 0.59% 2.41% 1 0.224 (-0.88%)
Linear FEM \ \ 2.30% 12.5% | \

Treemap plot of DMN: Visualization of the binary-tree structure

]

(b) N =6, N, = 13, vf; = 0.220

, maximum test

(¢) N =8,N, =28,vf; =0.224
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@LSTC Online extrapolation for rubber composite with damage

e Matrix: Mooney-Rivlin hyperelastic rubber with Mullins effect.
e Particle: Neo-Hookean material which is 100 times harder than the matrix.
e Large deformation: uniaxial tension up to 50%.

0 1

ot

ng(ﬂ[Pa.)

Fiy Fys

(a) Uniaxial tension. (b) Shear.

Figure 10: Stress-strain curves from DMN and DNS for hyperelastic particle-reinforced rubber composite with Mullins effect
under (a) uniaxial tension and (b) shear loading conditions. Both loading and unloading are considered. The network depth

are N = 4 (dotted), 6 (dashed) and & (solid).

© 2019 LSTC



Offline and online computational cost

RPN | STC
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Table 7: Offline computational times for the particle-reinforced RVE.

DMN training (20000 epochs)

Training data generation
DNS (400 samples) N =4 N =6 N =28
Nepu 10 10 10 10
Wall time (h) 39.5 5.4 16.7 43.0
R DNS, 4860s
) Linear FEM, 2420s
10.3_
»
§102' —6— DMN, 1 cpu
£ —-— Linear FEM, 1 .
= | — NS, 10cpus Slope = 1.14 “Computational cost” = O(N dof)
= o /
N =6, 2.6s
N =8, 6.0s
100_
10! 107

N, of trained network

(a) Hyperelastic particle-reinforced composite.
* Numerical tests are performed on Intel Xeon E5-2640 processor

© 2019 LSTC



LSTC  Application to polycrystal materials
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Schematic of rolling process on a plate

* Macroscale empirical law is not
sufficient to describe the
anisotropic material behavior
under large deformation

* Direct numerical simulation
(DNS) of the whole polycrystal
structure is prohibited due to
large computation cost.

https://materials.imdea.org

Solution: Reduced order modeling of polycrystal RVE using deep material network

Deep material network (N=4)

Model reduction /
Machine Learning

)

Crve

e.g. 45x45x45 FEM mesh csingle
© 2019 LSTC



LSTC  Polycrystal materials with crystal plasticity
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DNS model: 415 grains, 45 X 45 X 45 mesh, 91125 elements

- 600
500 1 /
— — ——————
S 400 - _——
e, E——— : 4
= e=10x10""
Z 300
ey
200 1
100 1
O..
1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200
Fiy
(a) Geometry and mesh. (b) Uniaxial-tension responses of single grains (online).

Figure 11: Geometry and single-crystal responses of the polycrystalline RVE with random ODF. In (a), the RVE of equiaxed
grains is generated with nominal number 415 and mesh size 45 x 45 x 45. In (b), we selected 25 single grains randomly from
the RVE, and pulled them under the crystal plasticity law used in the online stage at strain rate ¢ = 1.0 x 10~%.

© 2019 LSTC



LSTC  Training results after 20000 epochs
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tr

T average test error €

Table 3: Training results of the polycrystalline RVE with random ODF. Average training error € and

maximum test error are provided for each DMN.

Epochs Training e Test ¢ Maximum e

N =4 20000 5.87% 6.00% 15.5%
N =6 20000 1.16% 1.27% 3.64%
N =8 20000 0.36% 0.43% 1.80%

(a) N=4,N, =8 (b) N =6, N, = 31 (c) N =8, N, =128

Figure 13: Treemaps of DMN for the polycrystalline RVE with random ODF. The network depths N are (a) 4, (b) 6 and (c)
8. The number of active nodes in the bottom layer N, is listed under each plot. The block colors are randomly assigned.

© 2019 LSTC



LSTC  Training histories of rves with random and textured odfs
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RVE with Random ODF RVE with textured ODF

(001) (011) 111

X )il x| ( ) IlO

(001)

©
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. =
) )
) )
(@)] (@)]
© ©
j - -
g 3
< <C
10~2

100 10! 102 10° 10 100 10! 102 10° 101
Epoch Epoch
(a) Random ODF. (b) Textured ODF.

Figure 12: Training histories of DMN for polycrystalline RVEs with (a) random ODF and (b) textured ODF. The histories of
the average training and test errors are denoted by solid and dashed lines, respectively. All the networks are trained for 20000
epochs.

© 2019 LSTC



LSTC Learning the grain orientations polycrystal materials
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Pole figures of DNS (hidden in data)

(001) (011) (111)

\{E\m\ Q \

DMN with N = 8

In training ...

(001) ) (011) (111)

20

I15

Im
)
n

X X :
After 20000 epochs, N r ! ! i
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Rate-dependent crystal plasticity

@LSTC Constitutive law:

Deformation gradient

__dx
F=%

Decomposition of deformation:
F = F°F?

Evolution of plastic deformation:
FP = LP . FP

Plastic velocity gradient

Nsiip

LP = z Ya(Se ® my)
a=1

Y, : shear rate on slip system «
m,,: slip plane normal
S, slip direction

Many constitutive laws has been proposed. The
following is a phenomenon based one.

Flow rule (power law [1]):

(m—1)

@ @ =@ L@ _ @)
T T @ @
0 0

Hardening rule (hardening/recovery law [1]):

Drag stress:
Nsl'i-p Nslz'p

7 = H Y0 g3 - R 3SR,
8 8

g™ = x + (1 — X)dap,
Back stress:

a® = hy® — raly®|,

X, H, R, h and r are material parameters.

© 2019 LSTC [1] McGinty, R. D. (2002). Multiscale representation of polycrystalline inelasticity. PhD thesis, Georgia Tech.
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FFT-based DNS:
FEM-based DNS:

Online stage of DMN with rate-dependent crystal plasticity

Material network with N = 6: 140s.
Material network with N = 8: 560s.
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(a) Random ODF.
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130 hours (468000s).
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(b) Textured ODF.

Figure 16: Uniaxial stress-strain curves predicted by DNS and DMN for the polycrystalline RVEs with (a) random ODF and
(b) textured ODF based on finite-strain rate-dependent crystal plasticity. Two strain rates are considered: ¢ = 1.0 x 10~% and
¢ = 1.0. The network depths are N =4 (dotted), 6 (dashed) and 8 (solid).
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LSTC More than two scales? Network concatenation

Livermore Software
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Figure 23: An illustration of three-scale homogenization in CFRP through the concatenation of networks. The material
responses of the yarn phase in the mesoscale woven composite are given by the homogenization of the microscale UD composite.
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LSTC  Trained networks for UD composites
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LSTC  Trained networks for woven composites
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LSTC  Three scales vs. Two scales
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Two Scales: The yarn phase in woven composite is elastic

Three Scales: The yarn phase in woven composite is informed by DMN of UD composite
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Figure 24: Three-scale vs. two-scale homogenizations. The network depths of the UD and woven DMNs are 7 and 8, respectively.
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&) =c. summary

* Deep material networks:
o 2D and 3D building blocks

o Hierarchical topological structure.

* A complete machine learning procedure based on offline numerical DNS data or
experimental testing data.

* Efficient and accurate extrapolation for challenging RVE homogenization problems:
o Nonlinear history-dependent plasticity
o Finite-strain hyperelasticity under large deformations.

o Crystal plasticity
e Parallel computing (CPU)

Future opportunities

* Building blocks with multiple layers / multiple phases
* Interfacial effect : debonding in CFRP, grain boundary effect ...
* Integration with design framework

* Concurrent multiscale simulations enhanced by Al/deep material
network.

* GPU computing
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