

USNCCM15 Short Course: Machine Learning Data-driven Discretization Theories, Modeling and Applications

Transfer learning in structure-property predictions

<u>Zeliang Liu</u>, Ph.D., Research Scientist Livermore Software Technology Corporation (LSTC) <u>zlliu@lstc.com</u>

2:40~3:10 PM, July 28, 2019

15th U.S. National Congress on Computational Mechanics Austin, TX, USA

- **Motivations:** Unified set of databases covering the full-range structure-property relationship, improvement of training convergence
- **Transfer-learning strategy:** Non-random initialization, database extrapolation and interpolation
- Micromechanics: Continuous structure-property relationship
- A materials design problem: Design of material toughness and ultimate tensile strength
- Summary and future work

Traditional ML

VS

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Source: towardsdatascience.com

Source: databricks.com

The fitting parameters are randomly initialized previously:

$$z_N^{j(0)} \sim U(0.2, 0.8)$$
 and $\theta_i^{k(0)} \sim U(-\pi/2, \pi/2)$.

Z. Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168.

© 2019 LSTC

_STC

Particle-reinforced RVEs with various volume fractions

Fig. 2 DNS microstructures of particle-reinforced 2D RVEs with the volume fraction of particle phase vf_2 ranging from 0.1 to 0.6.

- (c) Treemaps of DMN after 10000 epochs of training.
- With random initialization, the DMN databases trained for different RVEs are not analogous to each other in terms of the topological structure.

Fig. 2 DNS microstructures of particle-reinforced 2D RVEs

• Continuous migration between different database can not be realized through direct interpolation of the fitting parameters

LSTC Livermore Software Technology Corp.

Transfer learning of deep material network

Fig. 2 DNS microstructures of particle-reinforced 2D RVEs with the volume fraction of particle phase vf_2 ranging from 0.1 to 0.6.

Z. Liu, C.T. Wu, M. Koishi. Computational Mechanics (2019)

For each RVE:

Generating orthotropic elastic samples:

- Inputs: \mathbf{D}^{p1} , \mathbf{D}^{p2}
- Outputs: $\overline{\mathbf{D}}^{dns}$

$$\mathbf{D}^{p1} = \begin{cases} 1/E_{11}^{p1} - v_{12}^{p1}/E_{22}^{p1} \\ 1/E_{22}^{p1} \\ 1/(2G_{12}^{p1}) \end{cases} \qquad \mathbf{D}^{p2} = \begin{cases} 1/E_{11}^{p2} - v_{12}^{p2}/E_{22}^{p2} \\ 1/E_{22}^{p2} \\ 1/(2G_{12}^{p2}) \end{cases}$$

Design of Experiments (DoE): 400 training / 100 test samples

Phase contrast: $E_{11}^{p1}E_{22}^{p1} = 1$, $\log_{10}(E_{11}^{p2}E_{22}^{p2}) \in U[-6, 6]$

Anisotropy:

$$\log_{10}(E_{22}^{p1}/E_{11}^{p1}) \in U[-1, 1], \quad \log_{10}(E_{22}^{p2}/E_{11}^{p2}) \in U[-1, 1]$$

Shear moduli:
$$\frac{G_{12}^{p1}}{\sqrt{E_{22}^{p1}E_{11}^{p1}}} \in U[0.25, 0.5], \quad \frac{G_{12}^{p2}}{\sqrt{E_{22}^{p2}E_{11}^{p2}}} \in U[0.25, 0.5]$$

Extrapolation of fitting parameters: Update the activations of the base network to match the target volume fraction, and all angles remains unaltered.

(t): Target; (b): Base;a(x): ReLU activation function

STC

Fig. 4 Distributions of errors on the test datasets from the naive approach. The network for $vf_2 = 0.1$ is chosen as the base of migration

The naive approach is adopted mainly for the initialization of transfer learning.

Random initialization

Comparison: Topology structure of DMN

Random initialization

(c) Treemaps of DMN after 10000 epochs of training.

- Analogous topology structure, enabling interpolation of fitting parameters
- More compressed network, less number of DOFs

The parameters for the interpolated database at

$$\tilde{z}^{j(*)} = N_0 a(\tilde{z}^{j(0)}) + (1 - N_0)a(\tilde{z}^{j(1)}) \qquad \theta_i^{k(*)} = N_0 \theta_i^{k(0)} + (1 - N_0)\theta_i^{k(1)} + (1 - N_0)\theta_i^{k(1$$

The shape function is given by N

$$V_0 = \frac{vf_2^{(1)} - vf_2^{(*)}}{vf_2^{(1)} - vf_2^{(0)}}$$

Micromechanics I: Continuous structure-property relationship

Matrix (phase 1): $E_1 = 1$ MPa, $v_1 = 0.3$.

STC ivermore Software echnology Co

Hard particle (phase 2): $E_2 = 1000 \text{ MPa}, v_2 = 0.3$.

Micromechanics II: Continuous structure-property relationship

Matrix (phase 1): $E_1 = 1$ MPa, $\nu_1 = 0.3$ Soft particle (phase 2): $E_2 = 0.01$ MPa, $\nu_2 = 0.3$

Design parameter: Young's modulus of particle E_2 , volume fraction of particles vf_2 **Objectives:** Ultimate tensile strength σ^{TS} , material toughness U^T

Other settings: The matrix is assumed to be elasto-plastic with constant properties

Definition of failure: The composite RVE fails if any of the two conditions is meet:

- \circ 10% of the matrix phase has an effective plastic strain ε_1^p above 0.07;
- The mean effective plastic strain in the matrix phase $\bar{\varepsilon}_1^p$ is above 0.05.

DMN extrapolation

Offline stage: Both matrix and particle phases are orthotropic linear elastic **Online stage:** The matrix is elasto-plastic with piece-wise linear hardening

(a) RVE with $vf_2 = 0.2$ loaded at $\varepsilon_{11} = 0.036$.

Table 1 Ultimate tensile strength σ^{TS} (MPa) for RVEs with different particle moduli E_2 and volume fractions vf_2

vf ₂	$E_2 = 5000 \text{ MPa}$			$E_2 = 2$ MPa		
	0.2	0.4	0.6	0.2	0.4	0.6
DNS	0.275	0.298	0.417	0.244	0.228	0.207
DMN	0.278	0.302	0.381	0.246	0.230	0.198
Error	+1.1%	+1.3%	-8.6%	+0.8%	+0.9%	-4.3%

DNS: 198212 elements

DMN: 34 nodes

Fit the DMN pdf to a log-norm distribution:

$$f_{\varepsilon}(\varepsilon, s, b, \eta) = \frac{1}{sy\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\ln y}{s}\right)^2\right)$$

Table 2 Material toughness U^T (KJ/m³) for RVEs with different particle moduli E_2 and volume fractions vf_2

vf ₂	$E_2 = 5000 \text{ MPa}$			$E_2 = 2 \text{ MPa}$		
	0.2	0.4	0.6	0.2	0.4	0.6
DNS	6.81	4.43	2.61	9.22	9.01	8.26
DMN	6.92	4.65	2.58	9.01	8.83	7.27
Error	+1.6%	+5.0%	-1.1%	-2.3%	-2.0%	-12.2%

Matrix phase (elastoplastic):

$$E_1 = 100 \text{ MPa}, \quad \nu_1 = 0.3 \qquad \sigma_1^Y(\varepsilon_1^p) = \begin{cases} 0.1 + 5\varepsilon_1^p & \varepsilon_1^p \in [0, 0.008) \\ 0.124 + 2\varepsilon_1^p & \varepsilon_1^p \in [0.008, \infty) \end{cases}$$

1

Particle phase (elastic):

 $E_2 = [1, 10, 000]$ MPa, $vf_2 = [0.10, 0.60]$. $v_2 = 0.3$

(a) Material toughness KJ/m^3 .

(b) Ultimate tensile strength (MPa).

Multi-objective optimization: A data point $X' = \{E'_2, vf'_2\}$ is defined to be Pareto efficient if there does not exist such a point $X'' = \{E''_2, vf''_2\}$ $(X'' \neq X')$ that the conditions

$$\sigma^{TS}(X'') > \sigma^{TS}(X') \text{ and } U^{T}(X'') > U^{T}(X')$$

are both satisfied.

STC

Table 3 Computational times for DMN with transfer learning and DNS on 10 Intel® Xeon® E5-2640 CPUs.

	Offline stage f	Prediction store (2000 DoF points)		
	Sampling (3000 data points)	Training (60000 epochs)	r rediction stage (5000 DOE points)	
DNS	0	0	≈ 3000 h (N/A)	
DMN	71 h 30 min	12 h $40~{\rm min}$	38 min	

Real-world application: Short fiber composite materials

Microstructural variations induced by Manufacturing Process

• Transfer learning of deep material network:

- Initial database migration using a naïve approach
- Faster convergence of training
- o Generation of analogous networks with the same base structure
- A unified set of databases are constructed by interpolating the fitting parameters
 - Continuous structure-property relationship
 - Encouraging micromechanical results of predicting the volume fraction effect on elastic properties
- Materials design enabled by the efficiency and accuracy of DMN extrapolation
 - Multi-objective optimization of material toughness and ultimate tensile strength
 - Failure prediction based on local distribution of effective plastic strain.

Future opportunities

- More material systems: rubber composite, short fiber composite, polycrystals...
- Database interpolation for more design variables
- Process-structure-property relationship
- Uncertainty quantification

Thank you!