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This class

• Motivations: Unified set of databases covering the full-range structure-property 
relationship, improvement of training convergence

• Transfer-learning strategy: Non-random initialization, database extrapolation 
and interpolation

• Micromechanics: Continuous structure-property relationship

• A materials design problem: Design of material toughness and ultimate 
tensile strength

• Summary and future work



© 2019 LSTC

General idea of transfer learning

Source: towardsdatascience.com

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
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Transfer learning in image classification

Source: databricks.com

https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html
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Deep material network: Revisit
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The fitting parameters are randomly initialized previously: 

Z. Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168. 

https://www.sciencedirect.com/science/article/pii/S0045782518304729
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Particle-reinforced RVEs with various volume fractions
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Motivation: Unify the databases of different RVEs 

• With random initialization, the DMN databases trained for different RVEs are not 
analogous to each other in terms of the topological structure.

• Continuous migration between different database can not be realized through direct 
interpolation of the fitting parameters 

Random initialization of fitting parameters
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Transfer learning of deep material network

Pretrained Network Reuse fitting parameters 𝒛, 𝜽

Z. Liu, C.T. Wu, M. Koishi. Computational Mechanics (2019)

https://link.springer.com/article/10.1007/s00466-019-01704-4
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Offline generation of training and test datasets

For each RVE:  

Generating orthotropic elastic samples:

• Inputs:  𝐃𝑝1, 𝐃𝑝2

• Outputs: ഥ𝐃𝑑𝑛𝑠

Design of Experiments (DoE): 400 training / 100 test samples

Phase contrast:

Anisotropy:

Shear moduli:
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A naïve approach: Update the activations without training

(t): Target; (b): Base; 
a(x): ReLU activation function

Extrapolation of fitting parameters: Update the activations of the base network to 
match the target volume fraction, and all angles remains unaltered.

The naive approach is adopted mainly for the initialization of transfer learning. 
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Comparison: Training and test errors

Random initialization 

Transfer learning 
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Comparison: Topology structure of DMN

Random initialization 

Transfer learning 

• Discontinuous topology structure
• Redundancy in the network

• Analogous topology structure, enabling interpolation of fitting parameters 
• More compressed network, less number of DOFs
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Interpolation of Database from Transfer Learning

Volume fraction of 
particles

The parameters for the interpolated database at  

The shape function is given by



© 2019 LSTC

Micromechanics I: Continuous structure-property relationship

Matrix (phase 1):

Hard particle (phase 2):



© 2019 LSTC

Micromechanics II: Continuous structure-property relationship

Matrix (phase 1):

Soft particle (phase 2):
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A materials design problem

Design parameter: Young’s modulus of particle 𝐸2, volume fraction of particles 𝑣𝑓2

Objectives: Ultimate tensile strength 𝜎𝑇𝑆, material toughness 𝑈𝑇

Other settings: The matrix is assumed to be elasto-plastic with constant properties

𝜀11

𝜎11

𝜎𝑇𝑆

𝜀𝑓

𝑈𝑇 = න
0

𝜀𝑓

𝜎11𝑑𝜀11

Definition of failure: The composite RVE fails if any of the two conditions is meet: 

o 10% of the matrix phase has an effective plastic strain 𝜀1
𝑝

above 0.07; 

o The mean effective plastic strain in the matrix phase ҧ𝜀1
𝑝

is above 0.05. 
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DMN predictions on global stress-strain relations

DMN extrapolation 

Offline stage: Both matrix and particle phases are orthotropic linear elastic 

Online stage: The matrix is elasto-plastic with piece-wise linear hardening 



© 2019 LSTC

DMN predictions on local failure properties

DNS: 198212 elements DMN: 34 nodes  

Fit the DMN pdf to a log-norm distribution:
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Design of Experiments on 𝐸2 and 𝑣𝑓2

Matrix phase (elastoplastic):

Particle phase (elastic):
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Pareto frontier of toughness and ultimate tensile strength

Multi-objective optimization: A data point 𝑋′ = 𝐸2
′ , 𝑣𝑓2

′ is defined to be Pareto efficient 

if there does not exist such a point 𝑋′′ = 𝐸2
′′, 𝑣𝑓2

′′ 𝑋′′ ≠ 𝑋′ that the conditions

are both satisfied.

3000 DoE points
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Computational time in offline and online stages
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Volume fraction of the particles

More design variables:

• Fiber orientations

• Interfacial properties

• Manufacturing parameters

...

Toughness
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Real-world application: Short fiber composite materials

Injection molding simulation:

Microstructural variations induced by Manufacturing Process

Orientation tensor:
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Summary

• Transfer learning of deep material network: 

o Initial database migration using a naïve approach

o Faster convergence of training

o Generation of analogous networks with the same base structure

• A unified set of databases are constructed by interpolating the fitting parameters

o Continuous structure-property relationship

o Encouraging micromechanical results of predicting the volume fraction effect on elastic 
properties 

• Materials design enabled by the efficiency and accuracy of DMN extrapolation

o Multi-objective optimization of material toughness and ultimate tensile strength

o Failure prediction based on local distribution of effective plastic strain.

• More material systems: rubber composite, short fiber composite, polycrystals…

• Database interpolation for more design variables 

• Process-structure-property relationship 

• Uncertainty quantification

Future opportunities
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Thank you!


