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Background

• Multiscale problems inevitably arise in many fields, including crashworthiness.
• In cars, fine-scale solutions impact the accuracy of crash prediction.
• It is impractical to resolve all details at a single scale in CAE software.
• Effective space-time multiscale methods need to be introduced.
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Machine Learning
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This talk
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Content of this talk

• Multiscale materials modeling and simulation
- Challenges and opportunities

- Machine learning

• Deep material network: embedding physics into machine learning model

• A data-driven multiscale framework: from process to structural analysis

- Data-generation and training

- Transfer learning

- Concurrent multiscale simulation

• Q&A
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What is multiscale materials modeling

Structural analysis Manufacturing Materials design

• Phenomenological materials model ?  - Complexity, Calibration, Design …

• Representative Volume Element (RVE) and Homogenization
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Spatially varying microstructures from manufacturing processes

Shear layer (surface)

• Injection molded short fiber reinforced composite

• Compressive molding, additive manufacturing, metal forming …

Shear layer (surface) Mid layer
“skin-core-skin” structure

Bärwinkel et al. Materials (2016)
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Existing methods for microstructure modeling

Accuracy
Efficiency

q Objectives: Arbitrary morphology, material nonlinearity (ex. plasticity), geometric nonlinearity.

q Applications: Concurrent multiscale simulation, materials design …

Direct numerical simulation (DNS)

• Finite element
• Meshfree and particle methods
• FFT-based method…

Analytical micromechanics methods

• Voigt and Reuss bounds
• Mori-Tanaka method (most popular)
• Self-consistent method…

Machine learning
&

Data



7

Machine learning in materials modeling

q Eigen-decomposition: Singular value decomposition 
(SVD), PCA, POD ….

o Extensive offline sampling
o Limitations of linear basis

Eigenvectors

q (Deep) neural network: Convolutional, 
Recurrent, Generative nets, Reinforcement 
learning …

Feedforward Neural Network CNN

RNN: Long Short-Term Memory (LSTM)

q Clustering analysis: Self-consistent clustering analysis ….

o Micromechanical assumption
o Computational complexity

K-means clustering
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A recurrent net for von-Mises (J2) plasticity?

Training with 2000 random paths Generalization/prediction for cyclic loading
Δ" = 0.001

Δ" = 0.001

Δ" = 0.0005

Δ" = 0.002
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The building block of a generic neural network
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Loss of physics …

How to embed mechanics/physics into the building block of a network structure?

1. Zeliang Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168.   
2. Zeliang Liu, C.T. Wu. JMPS 127 (2019): 20-46. 
3. Zeliang Liu, C.T. Wu, M. Koishi. Computational Mechanics (2019)
4. Zeliang Liu, CMAME 363 (2020): 1132913

(
!: activation function 

Deep Material Network (DMN)
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Deep material network: Physics-based building block

Material 1: /0!, 2!

Material 2: /0", 2"

1

2

Rotation 3, 4, 5

0

3

/0

Homogenization 2!, 2"

q Interfacial equilibrium conditions:  

q Interfacial kinematic constraints:  

Existence of analytical solutions

o Automatic differentiation
o Backpropagation

q Weights #!, #" are determined by the activations % in the bottom layer
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Deep material network: Architecture, input, output

Input: Microscale stiffness tensor &#!, &#"

Output: Overall stiffness tensor '&$%&

&#! &#"

'&$%&
Building blocks

&#!

&#"
'&$%&

Data Generation Training Prediction & Extrapolation
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Data generation: Sampling of phase properties

o Only linear elastic materials
o Strong material anisotropy and phase contrast
o Analyzed using LS-DYNA RVE package 

Design of Experiments (DoE)

Data Generation Training Prediction & Extrapolation
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Data generation: LS-DYNA RVE package

q RVE homogenization module in small-strain and finite-strain formulations.  
q Homogenized stress-strain results are saved to database file. 

a) Arbitrary RVE morphologies in both 2D and 3D

Displacement BCPeriodic BC

b) Various types of boundary conditions

Woven composite Particle-reinforced composite

d) Arbitrary material and loading conditionsc) Treatment of non-matching 2D & 3D meshes 

Example in 2D !
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Slave face

Master face

Example in 3D

Data Generation Training Prediction & Extrapolation
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Evolutions of weights during the training process (2D RVEs)

( = 5

( = 7

Depth 67#$% = 89%

;<&'( = 30%

;<&'( = 28%

Hidden Geo Info

Data Generation Training Prediction & Extrapolation
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Hidden geometric information encoded in fitting parameters

Grain orientation map 
of DNS (hidden in data)

In training
(first 2000 epochs),

After 20000 epochs, 

DMN with , -./012

Data Generation Training Prediction & Extrapolation
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Online prediction: Material nonlinearities, large deformation

Step 1: Microscale material law evaluations

Step 2: Propagation of 
stiffness matrix 3 and 
residual stress 45

Step 3: Macroscale boundary 
condition evaluation

Step 4: Propagation of 
deformation gradient 
Δ5 and stress Δ7

“Computational cost of one iteration” = ) *?@A

8'() = ,

Data Generation Training Prediction & Extrapolation



17

Applications to 2D and 3D RVEs

2D materials:
o Mooney-Rivlin hyperelasticity
o Von Mises plasticity

3D materials:
o Mooney-Rivlin hyperelasticity with Mullins effect
o Von Mises plasticity
o Rate-dependent crystal plasticity 

Particle-reinforced Rubber UD & Woven Fiber Composites PolycrystalsShort-fiber Composites

1. Zeliang Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168. 
2. Zeliang Liu, C.T. Wu. JMPS 127 (2019): 20-46. 
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Online predictions: Hyperelasticity, crystal plasticity…

! = 6 ! = 6
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Key features of deep material network

• Physics-based building block with interpretable fitting parameters
• Extrapolation capability for material and geometric nonlinearities with only linear elastic training data

• Efficient online inference: “Computational cost” = 9 (*+,
• Extension to debonding and failure analysis.

Zeliang Liu, CMAME 363 (2020): 1132913 
Training data: linear elasticity

Prediction: plasticity, hyperelasticity, new paths…
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An exemplar on short fiber reinforced composites

• Higher order tensors exists, but typically not available

Orientation tensor A

https://www.sciencedirect.com/topics/engineering/fibre-orientation-distribution

B!! B"" B")
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Data-driven framework for short fiber reinforced composites

Zeliang Liu, Haoyan Wei, Tianyu Huang, C.T. Wu. 16-th LS-DYNA user conference

• Molding shape
• Injection point
• Thermal history
• Material selection

• Fiber Orientation
• Residual Stress

Molding Mesh (Process)

1. Manufacturing Process

4. Online Multiscale 
Simulation

3. ML Methods – Transfer Learning 
+ Online Prediction

Composite material database

Deep material network (DMN)

…

• Fiber Orientation
• Residual Stress

Structural Mesh

• Fiber orientation
• Fiber length 
• Fiber diameter
• Fiber volume fraction
• Material properties

2. Offline Training Data

…

Experimental Tests

Material Properties 
of 

Matrix, Fiber, Interface 

0 "!

#!

Automakers… Molding software vendor

Pre-postprocessing
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Training results with transfer learning 

3D random (10%) 2D random (10%) Aligned (10%) Aligned (30%)

RVE 
Geometry

DMN 
Architecture

Transfer learning: DMNs with identical architectures
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Prediction results (nonlinear): Matrix plasticity, random paths
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Multiscale concurrent simulations in LS-DYNA

:;

RVE-0

RVE-2
RVE-1

!!!, !""

RVE-3

DMN + Transfer Learning + Network interpolation
(Only 4 RVEs are trained in the offline)

• Any RVE in design space.
• Arbitrary material law (e.g. plasticity).
• Any loading path.
• Efficient and accurate. 
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Concurrent simulation for the S-shaped rail
Averaged effective 
plastic strain in DMN

• 2340 Belytschko-Tsai shells

• DMN: 8 layers, 33 DOFs 
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Crush tubes with different fiber directions

Fiber dir
001

Fiber dir
110
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Computational time

Macroscale model Computational wall time (min)

Name Num of Elements Loading cycles C*+, = 1 C*+, = 4 C*+, = 16

S-shaped rail 2340 17372 224.0 65.5 18.1

Crush tube 641 (Sym) 17640 68.4 24.5 11.0

*All the computations are performed on a workstation with 20 Intel® Xeon® CPU E5-2640 v4 2.40 GHz processors.

RVE-scale single material-point test (random path):

Concurrent multiscale simulation with DMN:

DNS (Finite Element, 360K DOFs) DMN (8 layers, 33 DOFs)

1100s on 8 CPUs 3s on 1 CPU



28

Summary

• Multiscale materials modeling using RVE analysis

- LS-DYNA RVE package.

- Challenges: Efficiency and accuracy, lack of data, and danger of extrapolation.

• Deep material network in data-driven materials modeling

- Physics-based building block.

- Data generation, training, extrapolation, and transfer learning.

• Concurrent simulation with intelligent materials models

- Prototyping via LS-DYNA user material interface.

- Short fiber reinforced composite (injection molding)

• Near-future plans

- Workflow integration

- Material damage and failure analysis, experimental validations

- Research on implicit concurrent simulations


