Physics-based machine learning in materials modeling and multiscale simulation

Zeliang Liu

Senior Research Scientist Livermore Software Technology, an ANSYS company

Background

- Multiscale problems inevitably arise in many fields, including crashworthiness.
- In cars, fine-scale solutions impact the accuracy of crash prediction.
- It is impractical to resolve all details at a single scale in CAE software.
- Effective space-time multiscale methods need to be introduced.

Content of this talk

- Multiscale materials modeling and simulation
 - Challenges and opportunities
 - Machine learning
- Deep material network: embedding physics into machine learning model
- A data-driven multiscale framework: from process to structural analysis
 - Data-generation and training
 - Transfer learning
 - Concurrent multiscale simulation
- Q&A

What is multiscale materials modeling

Structural analysis

Manufacturing

Materials design

- Phenomenological materials model ? Complexity, Calibration, Design ...
- Representative Volume Element (RVE) and Homogenization

Spatially varying microstructures from manufacturing processes

- Injection molded short fiber reinforced composite
 - Shear layer (surface)

"skin-core-skin" structure

Bärwinkel et al. Materials (2016)

• Compressive molding, additive manufacturing, metal forming ...

Existing methods for microstructure modeling

Objectives: Arbitrary morphology, material nonlinearity (ex. plasticity), geometric nonlinearity.
Applications: Concurrent multiscale simulation, materials design ...

Machine learning in materials modeling

Eigen-decomposition: Singular value decomposition
(SVD), PCA, POD Eigenvectors

K-means clustering

- Extensive offline sampling
- Limitations of linear basis

□ Clustering analysis: Self-consistent clustering analysis

- Micromechanical assumption
- Computational complexity

□ (Deep) neural network: Convolutional, Recurrent, Generative nets, Reinforcement learning ...

RNN: Long Short-Term Memory (LSTM)

A recurrent net for von-Mises (J2) plasticity?

The building block of a generic neural network

How to embed mechanics/physics into the building block of a network structure?

Deep Material Network (DMN)

- 1. Zeliang Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168.
- 2. Zeliang Liu, C.T. Wu. JMPS 127 (2019): 20-46.
- 3. Zeliang Liu, C.T. Wu, M. Koishi. Computational Mechanics (2019)
- 4. Zeliang Liu, CMAME 363 (2020): 1132913

Deep material network: Physics-based building block

□ Interfacial equilibrium conditions: $\sigma_3^1 = \sigma_3^2$, $\sigma_4^1 = \sigma_4^2$, $\sigma_5^1 = \sigma_5^2$ □ Interfacial kinematic constraints: $\varepsilon_1^1 = \varepsilon_1^2$, $\varepsilon_2^1 = \varepsilon_2^2$, $\varepsilon_6^1 = \varepsilon_6^2$

 \Box Weights (w^1, w^2) are determined by the activations z in the bottom layer

Deep material network: Architecture, input, output

Data generation: Sampling of phase properties

Design of Experiments (DoE)

- Only linear elastic materials Ο
- Strong material anisotropy and phase contrast Ο
- Analyzed using LS-DYNA RVE package Ο

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

 $\log_{10}(E_{33}^{p1}/E_{11}^{p1})$

Data generation: LS-DYNA RVE package

- **RVE** homogenization module in small-strain and finite-strain formulations.
- □ Homogenized stress-strain results are saved to database file.

Woven composite

Particle-reinforced composite

a) Arbitrary RVE morphologies in both 2D and 3D

c) Treatment of non-matching 2D & 3D meshes

Data Generation

Training

b) Various types of boundary conditions

d) Arbitrary material and loading conditions

Prediction & Extrapolation

Evolutions of weights during the training process (2D RVEs)

Hidden geometric information encoded in fitting parameters

Online prediction: Material nonlinearities, large deformation

Applications to 2D and 3D RVEs

2D materials:

- Mooney-Rivlin hyperelasticity
- Von Mises plasticity

3D materials:

- $\circ~$ Mooney-Rivlin hyperelasticity with Mullins effect
- \circ Von Mises plasticity
- \circ Rate-dependent crystal plasticity

Short-fiber Composites

Particle-reinforced Rubber

- 1. Zeliang Liu, C.T. Wu, M. Koishi. CMAME 345 (2019): 1138-1168.
- 2. Zeliang Liu, C.T. Wu. JMPS 127 (2019): 20-46.

UD & Woven Fiber Composites

Polycrystals

Online predictions: Hyperelasticity, crystal plasticity...

Key features of deep material network

- Physics-based building block with interpretable fitting parameters
- Extrapolation capability for material and geometric nonlinearities with only linear elastic training data
- Efficient online inference: "Computational cost" = $O(N_{dof})$
- Extension to debonding and failure analysis.

Zeliang Liu, CMAME 363 (2020): 1132913

An exemplar on short fiber reinforced composites

• Higher order tensors exists, but typically not available

Coordinate system	Figure	Comment	a22	
e ₁ e ₂	×	Isotropic or 3D random orientation state	$\begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$	
03 02 01		Triaxial 3D	$\begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$	
e ₂	K K K	Planar random orientation	$\begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
e ₂		Perfectly aligned orientation in the e ₁ - direction	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	

https://www.sciencedirect.com/topics/engineering/fibre-orientation-distribution

Data-driven framework for short fiber reinforced composites

Zeliang Liu, Haoyan Wei, Tianyu Huang, C.T. Wu. 16-th LS-DYNA user conference

Training results with transfer learning

Transfer learning: DMNs with identical architectures

Prediction results (nonlinear): Matrix plasticity, random paths

Multiscale concurrent simulations in LS-DYNA

DMN + *Transfer Learning* + *Network interpolation*

(Only 4 RVEs are trained in the offline)

- Any RVE in design space.
- Arbitrary material law (e.g. plasticity).
- Any loading path.
- Efficient and accurate.

Concurrent simulation for the S-shaped rail

Crush tubes with different fiber directions

Computational time

RVE-scale single material-point test (random path):

DNS (Finite Element, 360K DOFs)	DMN (8 layers, 33 DOFs)		
1100s on 8 CPUs	3s on 1 CPU		

Concurrent multiscale simulation with DMN:

Macroscale model			Computational wall time (min)		
Name	Num of Elements	Loading cycles	$N_{CPU} = 1$	$N_{CPU} = 4$	$N_{CPU} = 16$
S-shaped rail	2340	17372	224.0	65.5	18.1
Crush tube	641 (Sym)	17640	68.4	24.5	11.0

*All the computations are performed on a workstation with 20 Intel[®] Xeon[®] CPU E5-2640 v4 2.40 GHz processors.

- Multiscale materials modeling using RVE analysis
 - LS-DYNA RVE package.
 - Challenges: Efficiency and accuracy, lack of data, and danger of extrapolation.
- Deep material network in data-driven materials modeling
 - Physics-based building block.
 - Data generation, training, extrapolation, and transfer learning.
- Concurrent simulation with intelligent materials models
 - Prototyping via LS-DYNA user material interface.
 - Short fiber reinforced composite (injection molding)
- Near-future plans
 - Workflow integration
 - Material damage and failure analysis, experimental validations
 - Research on implicit concurrent simulations